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Artificial intelligence, big data, machine learning, neural networks – look up any

recent research proposal and with good probability at least one of these phrases will appear.

It’s no secret that learning has taken this era of computer science by storm in our attempt

to create software that perform extremely complicated tasks. As one of the most accurate

models of our physical world currently known, it then makes sense to think about what

kinds of quantum systems can or cannot be learned. As with many problems in quantum

information and quantum computing, the simplest non-trivial versions of these problems start

with the stabilizer formalism. In this dissertation, we examine learning problems centered

around the stabilizer formalism in various different models from a theoretical standpoint

using the tools of computer science and quantum information. Specifically, our focus will be

on computational complexity, rather than sample complexity.

We begin by looking at learning in the tomographical sense. Here, one has black-box

access to copies of an unknown quantum state |ψ⟩ and want to learn properties of the state

or outright given an approximation of |ψ⟩. In this setting, [Mon17] gave an efficient learning

algorithm for stabilizer states. The key algorithmic tool was Bell difference sampling, which

allows one to sample from the stabilizer group of a stabilizer state. [GNW21] extended the

analysis of Bell difference sampling beyond just stabilizer states. Throughout Part I we

turn to Bell difference sampling to improve upon learning algorithms for states with only
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a few (i.e., either O(log n) or strictly less than n depending on context) T gates. By using

symplectic Fourier analysis, which is the generalization of Boolean Fourier analysis for a

symplectic vector space over F2n
2 , we derive powerful tools to understand the Bell difference

sampling distribution.

With these tools we first give a tolerant property testing algorithm for stabilizer states.

That is, we give an algorithm that distinguishes whether a state is ε1 close to some stabilizer

state or ε2 far from all stabilizer states for certain parameter regimes of ε1 and ε2. We use

our improved knowledge of Bell difference sampling to improve upon the completeness and

soundness analysis of the property tester given by [GNW21], which is not tolerant.

A second application is stabilizer fidelity estimation and approximation. Given a

state |ψ⟩ that is O(1) close to a stabilizer state, we output such a stabilizer state in time

2O(n). This beats the previous 2O(n2) brute force search algorithm. Having such a stabilizer

state also lets us figure out how close |ψ⟩ is to being stabilizer.

A third application is extending Montanaro’s learning algorithm to the output of

Clifford + O(log n) non-Clifford gate circuits. More generally, our algorithm interpolates

between Montanaro’s algorithm and pure state tomography algorithms with runtime that is

poly(n)∗exp(t) where t is the number of non-Clifford gates. This asymptotically matches the

runtime of classical simulation algorithms for such circuits. A key algorithmic step in this

work is the ability to “compress” the “stabilizer-ness” of a state onto a few qubits, allowing

the “non-stabilizer-ness” to be brute-forced on the remaining qubits.

Our final application is pseudorandomness lower bounds. Introduced by [JLS18], a

pseudorandom quantum state ensemble is a set of quantum states that are computationally

indistinguishable from Haar random. By re-purposing algorithms from above, we produce a

test that behaves differently when given a state produced by less than n T gates in a Clifford

+ T circuit versus being given a Haar random state. We note that this is tight assuming the

existence of linear-time quantum-secure One-Way Functions.
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Pivoting now, we also study the stabilizer formalism in the PAC learning framework

proposed by [Val84]. Here one does not have control over the measurements, but must make

do regardless (within information theoretic limits). We analyze the problem in two ways.

First we show that, unlike stabilizer states, learning the associated Clifford unitaries in the

proper PAC model is NP-hard. This is done by a reduction to the problem of finding a full

rank matrix in an affine subspace of matrices over F2.

The second is studying stabilizer states in the presence of noise. We utilize the

Statistical Query framework, a popular modification to the PAC learning framework that is

inherently tolerant to noise. There, we also show hardness in this framework by a reduction

to Learning Parities with Noise. This gives evidence that even in the PAC model stabilizer

states are hard to learn with noise.
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Chapter 1

Introduction

As a description of our physical world, quantum mechanics is seemingly without

equal. While Einstein and other great minds famously initially rejected many of its quirks

[EPR35], its immense predictive abilities combined with the acclaimed Bell test [FC72,

ADR82, WJS+98, BPA22] has cemented it as a fixture of physics. In some aspects, the

ability to predict physical phenomena is then inherently tied to making predictions about

quantum mechanics. One such sub-problem in that area is learning unknown quantum sys-

tems – given access to measurement data of some form, can one identify the quantum system

at play? And can one do it efficiently? Such problems will be the focus of this dissertation.

At its core, quantum is a reformulation of probability, by moving from non-negative

real numbers to complex amplitudes to describe the system. For countable distributions, we

go from these non-negative numbers adding to 1, to the magnitude of the complex amplitudes

adding to 1 instead. The evolution of such probabilistic systems are classically described by

stochastic processes, but to accommodate for quantum we must now use unitary operations to

describe evolution instead. While seemingly simple and benign, the consequences are systems

that are complex and strange relative to the classical ones we are used to thinking about.

Perhaps the simplest demonstration of this is the Mach-Zehnder interferometer experiment

[Ved06]. While normally described using beam splitters, it will suffice to think just about coin

flips. Imagine if one were to place a fair coin heads-side up, flip it, and then cover the coin

when it lands before anyone could see it. We could classically describe the coin as being 1/2

probability heads and 1/2 probability tails. Regardless of whether or not we look at the coin,

if we were to re-flip the coin we would again arrive at an even probability of heads and tails.

17



However, it is possible to define a ‘quantum’ coin flip, which also initially produces an even

probability distribution upon the first flip. The Mach-Zehnder interferometer experiment

shows that for such a quantum coin flip, whether or not one looks at the coin affects the

distribution after the second flip. If one were to look at the coin, thus measuring the state,

one would again get another even distribution upon re-flipping. This isn’t terribly surprising

because it matches the classical case. The surprise happens when we decide not to look at

the coin before we re-flip, where we always get heads! It becomes as if we never flipped the

coin in the first place, so somehow the second coin flip is “cancelling out” the first coin flip

in a way that is not possible under purely stochastic processes.

On the flip side of things (no pun intended), given the massive success of machine

learning, big data, etc on many of today’s most complex problems like Natural Language

Processing, Computer Vision, and robotics, it is only natural to wonder how these tools

fare when we assume the systems are inherently quantum? Indeed, quantum systems are

complex and often require an exponential number of bits (in n, the number of qubits) to

even classically describe a system using only n qubits (the quantum equivalent of a bit).

Without access to high-fidelity programmable quantum devices (i.e., error-corrected quan-

tum computers), experimental tests of such tools are currently out of our reach. However,

it is still entirely possible to study the question from a theoretical standpoint, specifically

related to the branches of tomography and learning theory. Using ideas of complexity theory

and cryptography, it is possible to conjecture that certain learning problems should be in-

tractable lest our understanding of computer science be unraveled to some degree. It is also

possible to give learning algorithms in certain frameworks with provable guarantees, giving

evidence that general tools of machine learning (or even quantum machine learning) could

one day prove useful for scientists.

In this relatively nascent area of learning quantum systems, a very natural simplifica-

tion to consider is that of the stabilizer formalism, which has a rich algebraic structure. The

18



stabiliser formalism is remarkably interesting because it seemingly allows for all of the com-

plex interactions that arise from quantum, such as superposition, entanglement, phase, etc.

This allows it to play a central role in quantum error-correction, quantum money schemes,

quantum key distribution, quantum algorithms, and more [Sho95, CS96, RB00, KLR+08]!

In spite of this, it is also known to not be able to account for all of quantum mechanics.

It is even conjectured that Clifford circuits can’t even solve all deterministically solvable

problems [AG04]! Because of this, Clifford circuits can actually be efficiently simulated clas-

sically [Got98], making Clifford circuits some of the most well understood classes of quantum

circuits today.

To illustrate the simplicity of Clifford circuits, we start by introducing the following

matrices:

H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In terms of realizing the 3 aspects of quantum mechanics – superposition, complex phase,

and entanglement – each of these 3 gates accomplishes one of those aspects respectively. It

turns out that every Clifford circuit can be generated via a combination of these 3 gates

applied to the qubits in various ways, showing that they are indeed highly quantum in some

sense. The set of states that can be produced via a Clifford circuit starting from the all zeros

state |0n⟩ are called stabilizer states. They’re called that because they are stabilized by some

unique abelian subgroup of Pauli matrices. Here Pauli matrices are the n-fold tensor of the

following four matrices:

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
.

These Pauli matrices under multiplication act like a symplectic vector space over F2n
2 . As

such, much of our algorithms for simulating/learning related to the stabilizer formalism

ultimately depends on doing linear algebra over F2 (proceeded by dealing with the other

add-ons, like phase, appropriately).
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Given all that, a very fundamental question for learning in the quantum domain

is: Can we learn a stabilizer state (computationally efficiently)? Näıvely, if you have an

exponential number of copies and the ability to perform arbitrary measurements you can

perform full quantum state tomography [OW16, OW17, HHJ+17] (see Section 7.1 for a

slightly more detailed discussion). But since we know that the state is a stabilizer state,

maybe we can do better? It turns out that using only a linear number of copies and O(n3)

time [Mon17], with high probability one can learn the generators of the stabilizer group of

the stabilizer state, thus uniquely identifying it. A wildly different unpublished algorithm

by Aaronson and Gottesman [Aar22] also exists but requires O(n2) samples (and the same

O(n3) time).

Naturally an interesting followup question is what happens when we take these learn-

ing problems beyond stabilizer states? We present 3 natural generalizations of this learning

problem – Clifford + T states, stabilizer states with noise, and Clifford circuits – that each

serve as important building blocks to learning problems in the stabilizer formalism. The

first we study in the tomographical sense, and the other two are studied in the statistical

learning theory framework (see Chapter 9).

Part I: Clifford + T States and Bell Difference Sampling

Since learning states and circuits within the stabilizer formalism have been examined,

the areas just beyond the formalism are also of particular interest. Of note, if one adds just

one non-Clifford gate to the Clifford gateset of H, S, and CNOT then one can in fact achieve

quantum universality. The most common of such gates is known as the T gate:

T =

(
1 0
0 eiπ/4

)
But what is the effect on the stabilizer formalism? We’ll take a look at simulation as an

example, since efficient classical simulation of Clifford + T circuits would imply BPP = BQP.
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Using current state-of-the-art simulation algorithms, simulating a quantum circuit comprised

of t different T gates requires time exponential in t. This is because the algorithms work first

by gadgetizing the Clifford + T circuit into a regular Clifford circuit with each T gate replaced

by an ancillary state |+T ⟩ = TH |0⟩ as part of the input. |+T ⟩ is then decomposed into a

linear combination of stabilizer states and by the linearity of quantum mechanics, the two

circuits should have equivalent results. The number of stabilizer states in the decomposition

grows exponentially with t to the best of our knowledge 1 and thus bottlenecks the efficiency

for large t. As such, T gates are often considered a resource of sorts, and the area where t

is small is considered to be just outside of the stabilizer formalism.

Extending the ideas of these Clifford + T simulation algorithms, it is possible to

try and define how hard an input state is to simulate. The most obvious is known as the

stabilizer rank, which is just the minimal number of states in any stabilizer decomposition.

However, both this and the approximate stabilizer rank (i.e., minimal number of states

to get somewhere close to the state) can be very hard to analyze. Some easier to work

with measures include stabilizer extent and stabilizer fidelity. Given a state |ψ⟩, its stabilizer

extent ξ(|ψ⟩) is the minimal (
∑

i ci)
2 such that |ψ⟩ =

∑
i ci |ϕi⟩ where the |ϕi⟩ are all stabilizer

states. A more intuitive definition is that it is the square of the minimal 1-norm, whereas

stabilizer rank is the minimized 0-norm. The stabilizer fidelity FS(|ψ⟩ is even simpler and

is the maximal fidelity of |ψ⟩ to any stabilizer state (i.e., argmaxi|⟨ψ|ϕi⟩|2 where |ϕi⟩ are

the stabilizer states). A very nice result by Bravyi et al. [BBC+19] is that for any state,

the product of its stabilizer extent and stabilizer fidelity ξ(|ψ⟩) · FS(|ψ⟩) ≤ 1, casting them

as somewhat of a dual to one another. In broad strokes, the runtime of classical simulation

algorithms is polynomially related (or inversely related in the case of stabilizer fidelity) to

stabilizer rank/extent/fidelity.

1And it is an important open problem in quantum information to show whether or not an exponential
number is actually required.
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Collectively, stabilizer rank, stabilizer extent, and stabilizer fidelity can be seen as

a set of related stabilizer complexity measures. A final complexity measure used in this

dissertation takes a different tact and tracks how much of the algebraic structure is preserved.

Since stabilizer states are stabilized by an abelian subgroup of 2n Pauli matrices, the stabilizer

dimension of a state then corresponds to how many Pauli matrices stabilize an arbitrary

quantum state.

Because much of the nice algebraic structure disappears once we start introducing T

gates, learning in this area has largely been slow. The only notable example up until now was

[LC22], which was able to give an algorithm for learning states produced by a very limited

set of Clifford + T circuits2. Notably, their approach used Bell difference sampling, which

was the same technique used in [Mon17]. Other results that used this (or similar techniques)

include [GNW21], [HK23], and [HCP22].

To try and give results for general Clifford + T states, we greatly improve our un-

derstanding of Bell difference sampling. In broad strokes, Bell difference sampling is a

distribution over F2n
2 produced by measuring 4 copies of a quantum state in the Bell basis,

then taking a convolution (see Section 3.2 for details). Let qψ be the distribution produced

by Bell difference sampling on copies of |ψ⟩. At a high level, we establish our results by

proving some structure on qψ for certain quantum states. For example, to prove our lower

bound on the number of non-Clifford gates required to prepare pseudorandom states, we

give an algorithm that distinguishes Haar-random states from quantum states prepared by

circuits with fewer than n/2 non-Clifford single-qubit gates (Chapter 8). The key insight

is that if |ψ⟩ is the output of such a circuit, then qψ is concentrated on a proper subspace

of F2n
2 , whereas for Haar-random states, qψ is anticoncentrated on all such subspaces with

overwhelming probability over the Haar measure. Proving these properties of qψ reveals a

simple algorithm: draw a linear number of samples from qψ and compute the number of

2See Section 7.1.2 for slightly more details.
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linearly independent vectors in the sample. Haar-random states will have 2n such vectors

with high probability and, otherwise, there will be strictly less than 2n such vectors.

In this dissertation, we start by introducing Bell difference sampling in Chapter 3,

capturing what was known prior to [GIKL23c]3. The chapter ends with an explanation and

proof of Montanaro’s learning algorithm. We then present our new findings about qψ in

Chapter 4, using techniques of symplectic Fourier analysis.

From there, we turn those findings into algorithmic results:

Chapter 5 Tolerant Testing of Stabilizer States

Gross et al. [GNW21] were able to come up with a Bell-difference-sampling-based

test that distinguished stabilizer states from those far from stabilizer states. While only

using 6 copies and linear time, the test has perfect completeness (i.e., always accepts for

stabilizer states) and was shown to accept with probability no more than 1
4
(FS(|ψ⟩) + 3).

We improve this result by giving a tighter characterization of the acceptance probability. The

proof involves a generalization of Boolean Fourier analytic techniques similar to the BLR

test The completeness is improved by showing that the acceptance probability is at least

1
2
(FS(|ψ⟩)6 + 1) [GIKL23c] and the sixth power on stabilizer fidelity is a direct consequence

of the six copies used in the test. We also give an improved soundness analysis, showing

that the acceptance probability is at most 1
8
(3FS(|ψ⟩) + 5) [GIKL23b]. This is because our

tighter character also allows us to use a tighter form of Markov’s inequality.

Chapter 6 Stabilizer State Approximations and Stabilizer Fidelity Estimation

Another application of Bell difference sampling is to approximate an arbitrary quan-

tum state with a stabilizer state (i.e., the one that realizes FS(|ψ⟩)). The algorithm involves

using Bell difference samples to (implicitly) build a list of possible stabilizer states and

3The (chronologically) first work that appears in Part I
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sampling until the fidelity maximizing stabilizer state is in the list with high probability.

Then by running a search algorithm to explicitly construct the states (via maximal clique

enumeration [TTT06]) and using classical shadows [HKP20] we are able to find said maxi-

mizing stabilizer state. The number of samples is O(n/FS(|ψ⟩)4) and the time complexity

is exp (O(n/FS(|ψ⟩)4)). For constant stabilizer fidelity, this is an super-polynomial improve-

ment over the previous brute-force search of exp (O(n2)).

Chapter 7 Efficient Tomography of O(log n) T gate states

Our final unique algorithm returns to the task of tomography. Here, given a state

|ψ⟩ produced by no more than t T gates (or any t single-qubit non-Clifford gates for that

matter), we are able to output a succinct classical approximation of |ψ⟩ using O(n) ∗ exp(t)

samples and O(n3) ∗ exp(t) time. This significantly improves upon [LC22] as we have no

restrictions on where the T gates are placed, what the state looks like before the T gates

are applied, as well as can replace the T gates with arbitrary single-qubit non-Clifford. The

algorithm starts by using Bell difference samples to learn Weyl(|ψ⟩). This allows us to map

|ψ⟩ to a state that looks like |ψ′⟩⊗|0n−2t⟩, thereby “compressing” the stabilizer-ness into the

last n−2t qubits. From there, bruteforce pure state tomography is done on |ψ′⟩ to complete

the description. The algorithm itself can be seen as a major generalization of Montanaro’s

algorithm [Mon17], in that the first step is a more general form of it.

Chapter 8 T gate lower bounds for pseudorandom quantum states

Cryptography and learning are often seen as dual problems, in that things that are

hard to learn can be used for cryptography and things that are cryptographically hard should

be impossible to learn. In that sense, we examine computationally pseudorandom quantum

states as introduced by [JLS18]. These are an ensemble of quantum states such that no

polynomial time quantum algorithm can distinguish between a uniform distribution over
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said ensemble or a Haar random state. Since Clifford + T is a common universal gateset

where the T gate is considerably more expensive than the other operations, we wish to

characterize how many T gates are necessary to produce pseudorandom quantum states. We

give two such lower bounds based on different measures of how far a state is from stabilizer:

stabilizer fidelity and stabilizer dimension. These result in lower bounds of ω(log n) and

Ω(n) respectively. Furthermore, the two bounds are asymptotically tight (in terms of their

respective stabilizer complexity measure) if linear-time quantum-secure one way functions

exist. The distinguishing algorithms are actually just special cases of ones introduced in

Chapters 5 and 7 respectively, with soundness analysis changed to be specifically for Haar

random states.

Part II Statistical Learning Theory for Quantum Systems

Taking some of these ideas even further, one can try to learn in a scenario where one

does not get to choose the measurements, also known as the PAC model [Val84, Aar07].

Here one does not try to learn in an absolute sense, like tomography, but in a statistical

sense where the idea is to give good predictions with high probability relative to some

distribution. More concretely, say there exists some unknown quantum state ρ that one

is trying to learn. You are given access to an oracle that draws a measurement E from

some (potentially unknown) distribution D and then returns to you the training datum

(E,Tr[Eρ]). The goal is then to output a hypothesis state σ such that the loss function

∆(σ, ρ) is small. An example of a simple and popular loss function is the squared loss, i.e.,

∆(σ, ρ) = EE∼D
[
(Tr[Eρ]− Tr[Eσ])2

]
. Rocchetto [Roc18] was able to develop an efficient

distribution-agnostic PAC learning algorithm with Pauli measurements for stabilizer states.

Here distribution-agnostic means that the learning algorithm does not need to know the

input distribution in advance. The key idea was using the aforementioned relationship of

Paulis to symplectic vector spaces over F2, creating an algorithm that achieved zero training
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loss and combined it with the generalization theorem given by Aaronson [Aar07].

Chapter 11: Statistical Queries for Quantum States

Continuing with the PAC learning model, it is possible to wonder what happens when

noise is added. Now what does noise exactly mean here? In the standard PAC learning model

of Boolean functions, noise simply means that the label is flipped with some probability.

But since we’re dealing with quantum states, another fair question is what happens when

quantum noise is applied to the state first, such as depolarizing noise?

Classically, one of the main ways to PAC learn in the presence of noise is to use the

Statistical Query (SQ) formalism [Kea98]. Here, rather than look at individual samples, the

learner chooses a function g : X × {0, 1} → [0, 1] to give to the oracle. This function acts

on the input-label pair (x, f(x)) and the oracle then returns the expectation E [g(x, f(x))]

of such a function up to some error. While not all PAC learning algorithms that deal with

noise lead to an SQ algorithm, all SQ algorithms imply a PAC learner that is able to resist

noise via a simple Chernoff bound argument. As such, due to the error tolerance built-in

to the SQ algorithm, it can be easily shown that very benign noises can be accommodated

in the SQ algorithm. More interestingly, it is possible for SQ algorithms to systematically

correct for larger errors. To give a small example of this, imagine that the error rate of

bit-flips on the label is known. Then the expectation of the function we are expecting and

the expectation of the function after it has gone through the noisy channel can be related

to one another, thus allowing for correction.

In an attempt to partially answer this question of noisy learning of quantum states,

we introduced the SQ model for learning quantum states [GL22]. Specifically, we cover the

more difficult probabilistic concept (p-concept) model. By a p-concept, we mean that rather

than receiving Tr[Eρ] ∈ [0, 1] as a label, one receives a {0, 1} label with expectation Tr[Eρ].

Thus, the effect of noise is altering the Bernoulli distribution associated with Tr[Eρ].

26



In this model, we were able to build on [AD98] and [Kea98] to show that SQ algorithms

for general quantum states could systematically correct both classification and malicious

classical noise, within information theoretic reasons. We additionally showed systematic

correction for global depolarizing noise, a common form of quantum noise. Utilizing the work

of Goel et al. [GGJ+20] that introduced information theoretic lower bounds on learnability

via the SQ-dimension, in [GL22] we give information theoretic lower bounds for learning

stabilizer states under a uniform distribution of Pauli measurements. We also improve this

lowerbound for a restricted subset of Pauli measurements via a reduction to learning parity

functions, a problem that is provably hard to SQ learn [Kea98]. Finally, we give an efficient

SQ algorithm for learning relative to uniform rank-1 product measurements, as well as give

some connections to differential privacy [DR14].

Chapter 10: PAC Learning Clifford Circuits

Another interesting line of work is what happens when the object we are trying to

learn is a circuit, rather than just a state? In the scenarios of absolute learning where one

has the ability to apply the unitary C (and also C†), Low [Low09] was able to devise an

algorithm in O(n2) time. The need for C† was later removed by Lai and Cheng[LC22] with

an algorithm that runs in O(n3).

The question of what happens in the PAC setting was then raised. One possible

definition for PAC learning Clifford circuits is to get as input, a pair (|ϕ⟩ , E), where |ϕ⟩ is

a stabilizer state and E is a Pauli matrix, resulting in a natural generalization of [Roc18].

The results of [CD20] can be modified4 to give a generalization result for quantum circuits

analogous to [Aar07]. This leads one to expect that a PAC learning algorithm for Clifford

circuits should be possible just as with [Roc18] for stabilizer states. Contrary to popular

intuition, it turns out that in the proper learning case, this possible if and only if NP ⊆ BPP

4For a proof of this see Appendix A
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[Lia23]5. By proper learning, the hypothesis is constrained to be a member of the concept

class, which in this case is the set of all Clifford circuits. Note that the algorithm in [Roc18]

was also a proper learner.

The hardness result follows from showing that even deciding if there exists a hypoth-

esis that produces zero error, also known as the consistency problem, is NP-Hard. This even

holds for the subset of Clifford circuits that only utilize CNOT gates, creating a classical

reversible circuit. Such circuits are called CNOT circuits. Here, each output bit is some

parity function of the input bits, meaning that the whole circuit can be expressed as a linear

transformation of the input bits over F2. Each sample that comes in constrains said matrix

to some affine subspace, meaning that all consistent matrices lie in the intersection, which is

just another affine subspace. The catch is that because the circuit is reversible, the matrix

must also be full rank, and indeed for every full rank matrix there exists a corresponding

CNOT circuit. This problem of finding a full rank matrix in some affine subspace is known

as the NonSingularity problem over F2 and was shown to be NP-complete [BFS99]. Even

moreso, we were able to show that the hardest instances of the NonSingularity problem

over F2 (i.e., the ones that come from the original Buss et al. [BFS99] hardness reduction)

can also formed as constraints arising from deciding consistency of CNOT circuits. Thus,

the consistency problem for CNOT circuits is NP-hard, and simple reductions show that

distribution-agnostic PAC learning of CNOT circuits and Clifford circuits must also be NP-

hard, covering the more interesting ’only if’ part of the statement.

To show the ’if’ part, we note that deciding consistency is NP-complete. Since Clifford

circuits can be encoded using only a polynomial number of classical bits, they can be used

as a witness and the consistency can be classically verified by running Gottesman-Knill

style simulation algorithms [AG04]. Search-to-decision reductions of NP-complete problems

combined with the generalization result of [CD20] then give an efficient randomized/quantum

5This is an equivalent statement to RP = NP, which was the original hardness statement.
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algorithm for PAC learning Clifford circuits should NP ⊆ BPP or NP ⊆ BQP respectively be

true.

Finally, in the non-distribution agnostic case we give some efficient learning algorithms

for Clifford and CNOT circuits for various distributions such as uniform, or where either the

state of the measurement values are fixed.
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Chapter 2

Quantum Information Preliminaries

This chapter is a review of quantum information and the stabilizer formalism. It

borrows heavily from [Lia23], [GIKL23c], and [GIKL23b].

We briefly introduce general notation and convention for quantum information before

diving into the stabilizer formalism, which is one of the central themes of this dissertation.

For more background on the stabilizer formalism, see, e.g., [Got97, NC02].

2.1 Basic Preliminaries

We use log as the natural logarithm and log2 as the logarithm base 2. We state two

concentration inequalities that we use in this work.

Fact 2.1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent identically distributed ran-

dom variables such that ai ≤ Xi ≤ bi. Let X denote their sum and let µ := E[X]. Then for

any δ > 0,

Pr [X ≤ µ− δ] ≤ exp

(
− 2δ2µ∑n

i=1(bi − ai)2

)
.

Fact 2.2 (Multiplicative Chernoff bound). Let X1, . . . , Xn be independent identically dis-

tributed random variables taking values in {0, 1}. Let X denote their sum and let µ := E[X].

Then for any δ > 0,

Pr [X ≤ (1− δ)µ] ≤ e−δ
2µ/2.
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2.2 Quantum States and Circuits

A quantum state ρ on n qubits is a 2n × 2n PSD matrix with trace 1 If the matrix

is rank 1 then we refer to ρ being a pure state, since it can be decomposed as ρ = |ψ⟩⟨ψ|

where |ψ⟩ is a 2n-dimensional column vector with norm 1 and ⟨ψ| is its complex conjugate.

Oftentimes, we will simply refer to a quantum pure state as |ψ⟩, noting that eiθ |ψ⟩ refers to

the same effective state |ψ⟩⟨ψ| (i.e., global phase does not matter).

An observable is simply a Hermitian matrix. By the spectral theorem, any Hermitian

matrixH can be viewed asH =
∑

i λi |λi⟩⟨λi| where the |λi⟩ are a complete set of orthonormal

states i.e., a measurement basis. We can think of the |λi⟩⟨λi| as the projector describing the

probability of measuring |λi⟩. Measuring in this basis and returning λi for the corresponding

eigenspace gives rise to a random variable whose expectation is Tr[Hρ]. If ρ = |ψ⟩⟨ψ| is a

pure state, we will alternatively write this as Tr[Hρ] = ⟨ψ|H|ψ⟩ due to the cyclic property

of the trace. A two-outcome measurement E is then a projector such that E2 = E such that

the probability of a ‘1’ outcome is Tr[Eρ] and the probability of a ‘0’ outcome is 1−Tr[Eρ],

leaving the expectation value as simply Tr[Eρ].

A quantum process is how one evolves a quantum state, and therefore it must preserve

the trace 1 and the PSD condition. We will be primarily interested in quantum circuits, which

are the subset of quantum processes that map pure states only to other pure states. These

are constrained to be unitary operations, such that after acting on ρ with the circuit C, the

state that we are left with is CρC† where C† is the complex conjugate of C.

Our most common measure of distance between two quantum states will be fidelity

and trace distance.

Definition 2.3 (Fidelity). Given quantum states ρ and σ, the fidelity between ρ and σ is

F (ρ, σ) =

(
Tr

[√√
ρσ

√
ρ

])2

.
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Alternatively, if ρ = |ψ⟩⟨ψ| is a pure state (as will be common for us) then the

expression simplifies to

F (|ψ⟩⟨ψ| , σ) := ⟨ψ|σ|ψ⟩ .

While the fidelity between two pure states is a very natural way to compare how close

two states are, it is not a metric. For that, we will introduce the trace distance, which is in

fact a metric.

To define the trace distance, we will first define the trace norm.

Definition 2.4 (Trace norm). For a Hermitian matrix A, let
∑

i λi |λi⟩⟨λi| = A be its spectral

decomposition. The trace norm is defined to be

∥A∥Tr :=
∑
i

|λi|.

The trace distance simply arises from the trace norm as one would expect, but with

a scale factor added to keep the value in [0, 1].

Definition 2.5 (Trace distance). Given quantum states ρ and σ,

TD(ρ, σ) :=
1

2
∥ρ− σ∥Tr.

The trace distance can be seen as the quantum generalization of the total variation

distance between distributions. As such, like total variation distance it exhibits a useful

property of subadditivity with respect to tensor products.

Fact 2.6 (Subadditivity of trace distance).

TD(ρ⊗ ρ′, σ ⊗ σ′) ≤ TD(ρ, σ) + TD(ρ′, σ′)

Importantly, both fidelity and trace distance are unitarily invariant, in that for arbi-

trary unitary U , F (UρU †, UσU †) = F (ρ, σ) and TD(UρU †, UσU †) = TD(ρ, σ).

We can also relate trace distance to fidelity with the following well-known fact (see

[NC02], noting the difference in square in the definition of Fidelity).
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Fact 2.7 ([NC02] Eq 9.110).

1−
√
F (ρ, σ) ≤ TD(ρ, σ) ≤

√
1− F (ρ, σ)

and the upper bound is an equality if both ρ and σ are pure states.

Since we are commonly dealing with pure states in this work, this tight upper bound

will be very useful. For instance, we will sometimes want to convert from fidelity to trace

distance, to make use of properties like the triangle inequality or subadditivity, then convert

back to fidelity.

2.3 Symplectic Vector Spaces

We work extensively with F2n
2 as a symplectic vector space by equipping it with the

symplectic product.

Definition 2.8 (Symplectic product). For x, y ∈ F2n
2 , we define the symplectic product

as [x, y] = x1 · yn+1 + x2 · yn+2 + ...+ xn · y2n + xn+1 · y1 + xn+2 · y2 + ...+ x2n · yn, where all

operations are performed over F2.

We can alternatively view x and y as vectors, such that [x, y] = xTΛ(n)y where

Λ(n) :=

[
0 I⊗n

I⊗n 0

]
is a 2n× 2n matrix.

The symplectic product gives rise to the notion of a symplectic complement, much

like the orthogonal complement for the standard inner product modulo 2.

Definition 2.9 (Symplectic complement). Let T ⊆ F2n
2 be a subspace. The symplectic

complement of T , denoted by T⊥, is defined by

T⊥ := {a ∈ F2n
2 : ∀x ∈ T, [x, a] = 0}.
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We present the following useful facts about the symplectic complement, many of

which are similar to that of the more familiar orthogonal complement.

Fact 2.10. Let S and T be subspaces of F2n
2 . Then:

• T⊥ is a subspace.

• (T⊥)⊥ = T .

• |T | · |T⊥| = 4n, or equivalently dimT + dimT⊥ = 2n.

• T ⊆ S ⇐⇒ S⊥ ⊆ T⊥.

A subspace T ⊂ F2n
2 is isotropic when for all x, y ∈ T , [x, y] = 0. Equivalently, T is

isotropic if and only if T ⊆ T⊥. A subspace T ⊂ F2n
2 is Lagrangian when T⊥ = T . Finally,

a subspace T ⊆ F2n
2 is coisotropic if its symplectic complement is isotropic.

2.4 Pauli Group and Weyl Matrices

We will start by giving the following matrices, known as the Pauli matrices.

I =

(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
Noting that these are all unitaries that act on a single qubit, we can generalize to n

qubits.

Definition 2.11. Let Pn = {±1,±i} × {I,X, Y, Z}⊗n be the matrix group consisting all

n-qubit Paulis with phase ±1 or ±i.

We refer Pn as the Pauli group, while the individual elements of Pn are interchange-

ably referred to as Pauli operators or n-qubit Pauli matrices throughout the dissertation.

We’ll also introduce some shorthand notation:
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Definition 2.12. Let Xi and Zi be the Pauli operator acting only on the i-th qubit with X

or Z respectively and the identity matrix on all other qubits.

Definition 2.13. For v ∈ Fn2 , let Xv =
∏n

i=1X
v′i
i and Zv =

∏n
i=1 Z

v′i
i respectively where v′

is the representation of v as the n-bit string in {0, 1}n.

While the phase part (i.e., {±1,±i}) of the definition is necessary to make the Pauli

operators a group, much of the interesting parts have nothing to do with it. Indeed, many

times we will want to ignore the phase in front of the matrix and talk about the structure of

the Pauli matrices. Note that Zv · Zw = Zv+w, assuming the dimensions of v and w match.

It is easy to see that v ̸= w also implies that Zv ̸= Zw. As such, we introduce the following

matrices to formalize this idea.

Definition 2.14. For x = (a, b) ∈ F2n
2 , the Weyl operator Wx is defined as

Wx := ia
′·b′XaZb,

where a′, b′ ∈ Zn2 are the embeddings of a, b into Zn2 respectively.

Each Weyl operator is a Pauli operator, and every Pauli operator is a Weyl operator

up to a phase. There is clearly a bijection between F2n
2 and the set of Weyl operators

that we will use to freely go between the two. Importantly, commutation relations between

Weyl operators (and the Pauli operators they represent up to phase) are determined by the

symplectic product. In particular, for x, y ∈ F2n
2 , the Weyl operators Wx,Wy commute when

[x, y] = 0 and anticommute when [x, y] = 1. A useful identity that represents this idea is the

following:

Fact 2.15.

WxWyWx = (−1)[x,y]Wy
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So, if T ⊆ F2n
2 is a subspace, then T is isotropic if and only if {Wx : x ∈ T} is a set of

mutually commuting Weyl operators. Similarly, T is Lagrangian if and only if {Wx : x ∈ T}

is a set of 2n mutually commuting Weyl operators.

An important fact is that all of the Weyl operators besides W0n = I⊗n have trace

zero. Another important fact is that for all x ∈ F2n
2 , W 2

x = I⊗n. In general, we find that

Tr[WxWy] = 2n1x=y. As a result, the Weyl operators collectively form an orthogonal basis for

2n × 2n matrices with respect to the Frobenius inner product ⟨A,B⟩ = Tr[A†B]. This gives

rise to the so-called Weyl expansion of a matrix. We give the special case for Hermitian

matrices.

Definition 2.16 (Weyl expansion). Let H be a Hermitian matrix. The Weyl expansion of

H is

H =
1√
2n

∑
x∈F 2n

2

cH(x)Wx,

where cH(x) =
1√
2n
Tr[WxH] ∈ R.

Due to the structure of the Weyl operators and the fact that quantum states are

represented as Hermitian matrices, we can view this as a form of Fourier expansion for

quantum states. We now give a version of Plancherel’s theorem for the Weyl expansion.

Lemma 2.17 (Weyl Operator Plancherel’s theorem). For Hermitian matrices A and B,

Tr[AB] =
∑
x∈F2n

2

cA(x)cB(x).
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Proof.

Tr[AB] = Tr

 1√
2n

∑
x∈F 2n

2

cA(x)Wx

 1√
2n

∑
y∈F 2n

2

cB(y)Wy


=

1

2n

∑
x,y∈F2n

2

cA(x)cB(y)Tr[WxWy]

=
1

2n

∑
x,y∈F2n

2

cA(x)cB(y)2
n1x=y

=
∑
x∈F2n

2

cA(x)cB(x)

Since quantum states are Hermitian matrices, every quantum state has a Weyl ex-

pansion. A useful application of Lemma 2.17 is that for a pure state |ψ⟩⟨ψ|, the cψ(x)2 must

sum to 1. This can be seen as the analogue of Parseval’s identity for quantum pure states.

Corollary 2.18 (Quantum Pure State Parseval’s identity). For a pure state |ψ⟩,

∑
x∈F2n

2

cψ(x)
2 = 1.

Proof.

∑
x∈F2n

2

cψ(x)
2 = Tr[|ψ⟩⟨ψ|2] (Lemma 2.17)

= Tr[|ψ⟩⟨ψ|]

= 1

The second line follows from the fact that |ψ⟩⟨ψ| is a projector, so |ψ⟩⟨ψ|2 = |ψ⟩⟨ψ|.

Another way of seeing this is that the square of the cψ(x)’s gives rise to a distribution

over F2n
2 and therefore over the Weyl operators. This will become extremely useful in Part I.
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2.5 Stabilizer Groups and States

Let ρ be a state that can be written as 1
2n

∑
σ∈G σ, where G ⊂ Pn \ {−I⊗n} is an

abelian subgroup without the negative identity. As it turns out, if G is of order 2n then ρ will

be a pure state. A stabilizer state is then a pure state that can be written as 1
2n

∑
σ∈G σ,

where G ⊂ Pn \ {−I⊗n} is an abelian subgroup of 2n Pauli operators without the negative

identity. G is known as the stabilizer group of ρ. We denote the set of n-qubit stabilizer

pures states by Sn. There is also the alternative (and more popular definition) where |ψ⟩, is

the unique state that is stabilized by G. That is, for all g ∈ G, g |ψ⟩ = |ψ⟩. This definition

shows why −I⊗n isn’t allowed to be in G, since −I⊗n stabilizes nothing. It also shows why

one must restrict the entries of G to only have real phase.

Proposition 2.19. Any abelian subgroup of G ⊆ Pn \ {−I⊗n} cannot contain any Paulis

with an imaginary phase.

Proof. Given a Pauli with an imaginary phase, its square would be equal to −I⊗n, making

the group not closed. This is a contradiction.

As a consequence, we will often only want to consider the Paulis with real phase,

P±
n := {±1} × {I,X, Y, Z}⊗n.

One of the reasons stabilizer states are so important is this bijection between the

stabilizer group of a stabilizer state and the state itself; by simply knowing the generators

of the group one can easily reconstruct the state. And since there are at most n generators,

if one can efficiently write down the generators themselves then there is a polynomial size

representation of a stabilizer state. We note that the Weyl operators allow us to efficiently

write down generators of a stabilizer group, since we can write it as ±Wx. Keeping track

of the phase and storing x ∈ F2n
2 as a 2n-bit string results in a 2n + 1 bit string for each

generator. As a result, writing down a stabilizer state requires only O(n2) bits to write
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down classically. This is generally known as the Aaronson-Gottesman tableau [AG04]. It

immediately gives a 2O(n2) upper bound on the number of stabilizer states. This turns out

to be tight.

Proposition 2.20 ([AG04] Proposition 2). The number of n-qubit stabilizer states grows as

2Θ(n2).

We now introduce a bit of notation that will be used extensively throughout the

proofs of this dissertation.

Definition 2.21 (Stabilizer group). Let Stab(|ψ⟩) := {σ ∈ P±
n : σ |ψ⟩ = |ψ⟩} denote the

stabilizer group of |ψ⟩.

Definition 2.22 (Unsigned stabilizer group). Let Weyl(|ψ⟩) := {x ∈ F2n
2 : Wx |ψ⟩ = ± |ψ⟩}

denote the unsigned stabilizer group of |ψ⟩.

By standard linear algebra, we can show that Weyl(|ψ⟩) is closed under addition.

Fact 2.23. Weyl(|ψ⟩) is a subspace of F2n
2 .

Proof. We note that if x, y ∈ Weyl(|ψ⟩) then x+ y ∈ Weyl(|ψ⟩) since

|⟨ψ|Wx+y|ψ⟩|2 = |⟨ψ|WxWy|ψ⟩|2 = 1,

where the last equality comes from the definition of x, y ∈ Weyl(|ψ⟩). This shows that

Weyl(|ψ⟩) is a subspace.

We now show that, as a consequence of the uncertainty principle, Weyl(|ψ⟩) is

isotropic. 1

1In 1927, Heisenberg observed a tradeoff between knowing a particle’s position and momentum, which
has since been generalized in several ways. This particular uncertainty relation was derived by Schrödinger
in 1930.
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Fact 2.24 (Schrödinger uncertainty relation [Sch30, AB08]). For Hermitian observables A

and B,(
⟨ψ|A2|ψ⟩ − ⟨ψ|A|ψ⟩2

)(
⟨ψ|B2|ψ⟩ − ⟨ψ|B|ψ⟩2

)
≥
∣∣∣∣12 ⟨ψ|(AB +BA)|ψ⟩ − ⟨ψ|A|ψ⟩ ⟨ψ|B|ψ⟩

∣∣∣∣2
Fact 2.25. Let M = {x ∈ F2n

2 : ⟨ψ|Wx|ψ⟩2 > 1
2
}. Then for all x, y ∈M , [x, y] = 0.

Proof. Since the Weyl operators are Hermitian, they can be seen as observables. Let Wx

and Wy be two Weyl operators in M . Simple calculations tell us that(
⟨ψ|W 2

x |ψ⟩ − ⟨ψ|Wx|ψ⟩2
)(
⟨ψ|W 2

y |ψ⟩ − ⟨ψ|Wy|ψ⟩2
)
=
(
1− ⟨ψ|Wx|ψ⟩2

)(
1− ⟨ψ|Wy|ψ⟩2

)
<

1

4

where we utilize the fact that for all x ∈ F2n
2 , W 2

x = I⊗n. Now, assume that [x, y] = 1 for

the sake of contradiction. We would find that WxWy +WyWx = 0 such that∣∣∣∣12 ⟨ψ| (WxWy +WyWx) |ψ⟩ − ⟨ψ|Wx|ψ⟩ ⟨ψ|Wy|ψ⟩
∣∣∣∣2 = |⟨ψ|Wx|ψ⟩ ⟨ψ|Wy|ψ⟩|2 >

1

4
.

By Fact 2.24, this is a contradiction so [x, y] must be zero instead.

Corollary 2.26. Weyl(|ψ⟩) is an isotropic subspace of F2n
2 .

Proof. The subspace part is dealt with by Fact 2.23. We note that Weyl(|ψ⟩) ⊆ {x ∈ F2n
2 :

⟨ψ|Wx|ψ⟩2 > 1
2
}. By Fact 2.25, all pairs of x, y ∈ Weyl(|ψ⟩) must have have [x, y] = 0,

making the subspace isotropic.

Additionally, for all x ∈ Weyl(|ψ⟩) we find that sgn(Tr[Wx |ψ⟩⟨ψ|]) · Wx is contained

in Stab(|ψ⟩). As a result Weyl(|ψ⟩) is Lagrangian if and only if |ψ⟩ is a stabilizer state.

Furthermore, if T ⊂ F2n
2 is a Lagrangian subspace, then the set of states {|φ⟩ : Weyl(|φ⟩) =

T} forms an orthonormal basis of the n-qubit Hilbert space. Moreover, since each basis state

|φ⟩ is stabilized by 2n Weyl operators (up to phase), every basis state is a stabilizer state.

One final detail we need is that given x, y ∈ Weyl(|ϕ⟩) for stabilizer state |ϕ⟩, we need

to be able to efficiently determine which of ±Wx+y is in Stab(|ϕ⟩). Luckily, this was handled

by [AG04]:
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Fact 2.27 ([AG04]). Given (−1)aWx, (−1)bWy ∈ Stab(|ϕ⟩) for stabilizer state |ϕ⟩ and a, b ∈

F2, then i[x
′,y′](−1)a+bWx+y ∈ Stab(|ϕ⟩) where x′ and y′ are the embedding of x and y in Z

(or Z4) respectively.

Proof. Since (−1)aWx, (−1)bWy ∈ Stab(|ϕ⟩) then x, y ∈ Weyl(|ϕ⟩). By Corollary 2.26, Wx

and Wy must commute.

The major question is, what is the phase of Wx · Wy with respect to Wx+y? It is

well known that XY = iZ, Y Z = iX, and ZX = iY so we pick up an imaginary phase

every time the Pauli matrix on a particular qubit doesn’t commute between Wx and Wy.

Luckily, since Wx and Wy commute, we know that the total phase will end up being real.

The key idea is that, looking closely, what the symplectic product (without the modular

arithmetic) actually computes is exactly how many times Wx and Wy don’t commute over

all n qubits. Due to the periodicity of i, we can also take the symplectic product modulo 4

without affecting the phase.

We will implicitly apply this fact throughout the remainder of this work, since it

allows us to focus on finding generators of Stab(|ϕ⟩) without worrying about finding phases

of the items in the span.

2.6 Clifford Circuits

Informally, a Clifford circuit maps stabilizer states to other stabilizer states. Due

to the close relationship between stabilizer states and Pauli operators, they must also map

Pauli operators to Pauli operators as well.

Definition 2.28. A Clifford circuit is a unitary C on n qubits such that CPnC† = Pn,

while ignoring global phase on the unitary. More formally, consider the normalizer N (Pn) =

{C ∈ U(2n) | CPnC† = Pn}, and let Cn = N (Pn)/U(1) be the Clifford group on n

qubits.
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Like stabilizer states, generators are an important part of how we deal with Clifford

circuits. How a given Clifford circuit C acts on the generators of the Pauli matrices com-

pletely characterizes the unitary C [Low09]. To borrow the notation of Koenig [KS14], this

relationship can be efficiently described via:

CXjC
† = (−1)pjW(αj , βj) CZjC

† = (−1)qj
n∏
i=1

W(γj , θj) (2.1)

where j ∈ [n], pj, qj ∈ {0, 1}, αj, βj, γj, θj ∈ {0, 1}n, and W(v,w) are Weyl operators (see

Definition 2.14). It will sometimes be useful to view the sets {αj}, {βj}, {γj}, and {θj} as

matrices A,B,Γ,Θ ∈ Fn×n2 by stacking the bitstrings as columns then converting to F2. This

gives us a simple upper-bound on the number of Clifford circuits.

Proposition 2.29. There are at most 2O(n2) Clifford circuits.

Proof. The total number of bits we use to represent p, q, A, B, Γ, and Θ is 4n2+2n = O(n2).

There can then be at most 2O(n2) Clifford circuits.

However, because commutation relations are preserved, not all possible values of

α, β, γ, θ are allowed (the p and q values can be arbitrary). This leads us to the idea of

symplectic matrices. We note that a Clifford circuit can be encoded as a (2n + 1) × 2n

boolean matrix S defined as A Γ
B Θ
pT qT

 .
We will call this the full encoding of the Clifford circuit.

Definition 2.30. A symplectic matrix over F2n
2 is a 2n × 2n matrix S with entries in F2

such that

STΛ(n)S = Λ(n) =

[
0 I⊗n

I⊗n 0

]
(2.2)

These matrices form the symplectic group Sp(2n,F2).
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As a result, the symplectic matrices preserve the symplectic product [x, y] = xTΛ(n)y

on F2n
2 . It turns out that if we consider the submatrix

S :=

[
A Γ
B Θ

]
,

a necessary and sufficient condition to preserve the commutation relations of the generators is

for S to be symplectic, as {Xi}∪{Zi} forms a symplectic basis that generates F2n
2 . Formally,

Cn/Pn ∼= Sp(2n,F2). In a slight abuse of notation, we will define the action of Clifford circuit

C on x ∈ F2n
2 , to be C(x) := S · x. In this way, CWxC

† = ±WC(x).

2.6.1 CNOT Circuits and ⊕L

It is a well known fact that every Clifford circuit can be generated using only H, P ,

and CNOT gates as defined below:

H =
1√
2

(
1 1
1 −1

)
P =

(
1 0
0 i

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


We note that X = HP 2H. If we restrict to the subset of circuits that are generated

by only X and CNOT, we get what are known as CNOT circuits [AG04], which are a clear

subset of Clifford circuits. As it turns out, they will contain much of the same features of

Clifford circuits while greatly simplifying calculations.

Let us now consider the set of all Clifford circuit that map computational basis states

to other computational basis states, thereby stabilizing the subgroup {±1}×{I, Z}⊗n. Very

briefly, we will call these classical Clifford circuits as we will now prove that they are largely

equivalent to CNOT circuits. The following lemmas will be useful.

Lemma 2.31. Let Θ be the matrix form of the θj from Eq. (2.1). Any CNOT circuit C

must have Θ be full rank.
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Proof. Let us first consider what happens to a computational basis state when acted upon

by C. Referencing Eq. (2.1), Γ must be the zero matrix, since we always map computational

basis states to computational basis states (i.e., never introduces X as a stabilizer). Since

every member of Sp(2n,F2) is full rank, Θ must be full rank if Γ is rank zero.

Lemma 2.32. Let Θ be the matrix form of the θj from Eq. (2.1) for some Clifford circuit

C. If Θ is full rank then there exists a CNOT circuit with the same Θ.

Proof. One can verify that the Θ matrix of the circuit that does nothing, which is a valid

CNOT circuit as well, is the identity matrix. We note that a CNOT from qubit i to qubit j

performs the rowsum operation of adding row j to row i of Θ. Thus it is possible to efficiently

construct a circuit with matching Θ using rowsum operations via CNOT gates.

We can now prove our desired goal leveraging these two lemmas.

Proposition 2.33. Let C be an arbitrary classical Clifford circuit. It can be efficiently

generated using solely X, Z, and CNOT gates. Moreover, its effect on the computational

basis states can be entirely simulated using only X and CNOT.

Proof. Let us first consider what happens to a computational basis state when acted upon

by C. Referencing Eq. (2.1), Γ must be 0 so that we map computational basis states to

computational basis states. Let us focus on Θ and q. By Lemma 2.31, Θ must have full

rank. By Lemma 2.32, there exists a CNOT matrix that achieves the same Θ as well. To

get a matching q, one can simply apply an X gate at the beginning of each qubit that has

qj = 1, since XZX = −Z, and the following CNOT gates will not introduce any negative

phases. From here, we have already proved the moreover statement.

To prove the full result, we return to A and B. We will show that there exists a single

unique solution. Based on Eq. (2.2), to form a symplectic basis we find that ATΘ = I and

ATB = 0, since Γ = 0. Clearly AT = Θ−1, which is guaranteed to exist, and B = 0 since A
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will also be full rank. To match the pj values we simply place Z gates in front of the qubits

where pj = 1, similar to the X gates for qj.

This means we do not lose any kinds of interactions by only considering CNOT

circuits, since the only differentiating factors (i.e., the Z gates) do not actually affect the

outcome when fed with a computational basis state. As such, all given results will be given

in terms of simply CNOT circuits.

2.7 Stabilizer Complexity

Throughout most of Part I, we will be concerned with states that are “close” to a

stabilizer state, and showing that enough of the structure that we care about with stabilizer

states remains to perform useful algorithms. But what exactly does “close” mean? We first

define some complexity measures that characterize how far a general quantum state is from

being stabilizer in terms of stabilizer state decompositions.

Definition 2.34 (stabilizer extent [BBC+19]). Suppose |ψ⟩ is a pure n-qubit state. The

stabilizer extent of |ψ⟩, denoted ξ(|ψ⟩), is the minimum of ∥c∥21 over all decompositions

|ψ⟩ =
∑

i ci |ϕi⟩, where |ϕi⟩ ∈ Sn and c is some vector in C|Sn|.

Definition 2.35 (stabilizer fidelity [BBC+19]). Suppose |ψ⟩ is a pure n-qubit state. The

stabilizer fidelity of |ψ⟩, denoted FS , is

FS(|ψ⟩) := max
|ϕ⟩∈Sn

F (|ψ⟩⟨ψ| , |ϕ⟩⟨ϕ|) = max
|ϕ⟩∈Sn

|⟨ϕ|ψ⟩|2

the maximum fidelity of |ψ⟩ with any stabilizer state.

Below we give a useful relation between the complexity measures defined above.

Claim 2.36. Let |ψ⟩ be an n-qubit pure state. Then,

ξ(|ψ⟩) ≥ 1

FS(|ψ⟩)
.
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Proof. Let |ψ⟩ =
∑

|ϕ⟩∈Sn cϕ |ϕ⟩ be such that
(∑

ϕ|cϕ|
)2

= ξ(|ψ⟩). Suppose towards a con-

tradiction that FS(|ψ⟩) < 1
ξ(|ψ⟩) and therefore |⟨ϕ|ψ⟩| < 1

ξ(|ψ⟩) for all |ϕ⟩ ∈ Sn. Then,

1 = |⟨ψ|ψ⟩| =

∣∣∣∣∣∣
∑

|ϕ⟩∈Sn

c∗ϕ ⟨ϕ|ψ⟩

∣∣∣∣∣∣ ≤
∑

|ϕ⟩∈Sn

|cϕ| |⟨ϕ|ψ⟩|

≤ max
i

|⟨ϕi|ψ⟩|
∑

|ϕ⟩∈Sn

|cϕ|

≤
√
FS(|ψ⟩)ξ(|ψ⟩)

< 1,

which is a clear contradiction.

The claim above also follows as a special case of [BBC+19, Theorem 4], though its

proof is more complicated.

We also define a new stabilizer complexity measure based on the unsigned stabilizer

group. Rather than characterize states in terms of stabilizer decompositions, which is useful

for classical simulation, it asks how much of its algebraic structure remains.

Definition 2.37 (Stabilizer dimension). Let |ψ⟩ be an n-qubit pure state. The stabilizer

dimension of |ψ⟩ is the dimension of Weyl(|ψ⟩) as a subspace of F2n
2 .

The stabilizer dimension of a stabilizer state is n, which is maximal, and, for most

states, the stabilizer dimension is 0. It is closely related to the stabilizer nullity [BCHK20].

In fact, for n-qubit states, the stabilizer dimension is simply n minus the stabilizer nullity.
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Part I

Bell Difference Sampling: Analysis
and Algorithms
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Chapter 3

Introduction to Bell Difference Sampling

This chapter introduces Bell difference sampling, a major algorithmic tool used

throughout Part I. It borrows heavily from [GIKL23c], [GIKL23b] and [GIKL23a], which

were all joint work with Sabee Grewal, Vishnu Iyer, and William Kretschmer.

The unifying tool in Part I is Bell difference sampling, a measurement primitive

that has recently found applications in a variety of algorithms related to stabilizer states

[Mon17, GNW21, GIKL23c, GIKL23b, GIKL23a]. We defer a full definition of Bell dif-

ference sampling to Section 3.2, but note some of its important properties here. Recall

that Corollary 2.18 tells us that for pure states, the squared coefficients in this expan-

sion sum to 1, and therefore form a distribution over F2n
2 . We denote this distribution by

pψ(x) := 2−n ⟨ψ|Wx|ψ⟩2. Bell difference sampling involves measuring pairs of qubits of |ψ⟩⊗4

in the Bell basis and combining the measurements to interpret the result as corresponding to

an n-qubit Weyl operator. Gross, Nezami, and Walter [GNW21] showed that Bell difference

sampling a quantum pure state |ψ⟩ is equivalent to sampling from the following distribution:

qψ(x) :=
∑
a∈F2n

2

pψ(a)pψ(a+ x),

i.e., the convolution of pψ with itself.

In this chapter, we will show why Bell difference sampling works. This will be our first

glimpse into the power of symplectic Fourier analysis. We then show that when Bell difference

sampling is performed on a stabilizer state, the result is the uniform distribution over the

unsigned stabilizer group (see Definition 2.14). This will allow us to explain the learning
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algorithm from [Mon17] in Section 3.4. Along the way, we will also prove an algorithmic

preliminary about finding important subspaces of F2n
2 using Bell difference sampling.

3.1 Symplectic Fourier Analysis

We now define and cover the basics of symplectic Fourier analysis. It is similar to

Boolean Fourier analysis (see e.g., [O’D14]), except the Fourier characters are defined with

respect to the symplectic product (Definition 2.8).

Definition 3.1 (Symplectic Fourier transform). Let f : F2n
2 → R. We define the symplec-

tic Fourier transform of f , which is given by a function f̂ : F2n
2 → R, by

f̂(a) =
1

4n

∑
x∈F2n

2

(−1)[a,x]f(x).

Hence, the symplectic Fourier expansion of f is

f(x) =
∑
a∈F2n

2

(−1)[a,x]f̂(a).

We prove a fact that will be critical in our symplectic Fourier analysis.

Lemma 3.2. For any subspace T ⊆ F2n
2 and a fixed x ∈ F2n

2 ,

∑
a∈T

(−1)[a,x] = |T | · 1x∈T⊥ .

Proof. If x ∈ T⊥ then this is easy to see. Suppose x ̸∈ T⊥. Then we claim [a, x] = 0 for

exactly half of the elements a ∈ T . To see this, we observe that there exists a y ∈ T such that

[y, x] = 1. Let T/y denote T modulo addition by y. Given a pair {a, a+ y} ∈ T/y, observe

that exactly one of [a, x] and [a+ y, x] is 0 and the other is 1. As such we have that for half

of all a ∈ T , [a, x] = 0 and for the other half, [a, x] = 1, giving us
∑

a∈T (−1)[a,x] = 0.

Lemma 3.2 immediately implies orthogonality of the new Fourier characters.
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Corollary 3.3. ∑
x∈F2n

2

(−1)[a,x](−1)[b,x] = 4n1a=b

Proof. By linearity, (−1)[a,x](−1)[b,x] = (−1)[a+b,x]. Set T = F2n
2 (such that T⊥ is the trivial

subspace) and apply Lemma 3.2, then note that a+ b = 0 ⇐⇒ a = b over F2.

As a basis change, we can then re-think inner products to be over the symplectic

Fourier coefficients as well.

Fact 3.4 (Plancherel’s theorem).

1

4n

∑
x∈F2n

2

(−1)[a,x]f(x)g(x) =
∑
x∈F2n

2

f̂(x)ĝ(x+ a).

Proof.

1

4n

∑
x∈F2n

2

(−1)[a,x]f(x)g(x) =
1

4n

∑
b,c∈F2n

2

f̂(b)ĝ(c)
∑
x∈F2n

2

(−1)[a+b+c,x]

=
1

4n

∑
b,c∈F2n

2

f̂(b)ĝ(c)(4n1a+b=c) (Corollary 3.3)

=
∑
x∈F2n

2

f̂(x)ĝ(x+ a)

We will mostly call Fact 3.4 with a = 0, recovering the usual Plancherel’s theo-

rem of 1
4n

∑
x∈F2n

2
f(x)g(x) =

∑
x∈F2n

2
f̂(x)ĝ(x). The one notable exception is the proof of

Lemma 3.8.

Finally, the convolution will play a central role in our work as the Bell difference

sampling distribution, qψ, will later be defined using it.

Definition 3.5 (Convolution). Let f, g : F2n
2 → R. Their convolution is the function f ∗ g :

F2n
2 → R defined by

(f ∗ g)(x) = 1

4n

∑
t∈F2n

2

f(t)g(t+ x).
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Convolution corresponds to the multiplication of Fourier coefficients, even under the

symplectic Fourier transform.

Proposition 3.6. Let f, g : F2n
2 → R. Then for all a ∈ F2n

2 ,

f̂ ∗ g(a) = f̂(x)ĝ(a).

Proof. We again use the fact the symplectic product is bilinear, such that [a, x] = [a, t] +

[a, x+ t]. Using this, we can expand and simplify:

f̂ ∗ g(a) = 1

4n

∑
x∈F2n

2

(−1)[a,x](f ∗ g)(x)

=
1

16n

∑
x,t∈F2n

2

(−1)[a,x]f(t)g(x+ t)

=
1

16n

∑
t∈F2n

2

(−1)[a,t]f(t)
∑
x∈F2n

2

(−1)[a,x+t]g(x+ t)

= f̂(a)ĝ(a).

3.2 Bell Difference Sampling

Recall the Weyl expansion of a quantum state (see Definition 2.16). For compactness

of notation, let ψ = |ψ⟩⟨ψ| be a pure quantum state. By Corollary 2.18, squaring the cψ(x)’s

gives rise to a distribution over F2n
2 and therefore over the Weyl operators. We denote this

distribution by pψ(x) := cψ(x)
2 and refer to it as the characteristic distribution. Note

that, for all x, pψ(x) ∈ [0, 2−n]. While pψ is not the distribution that comes from Bell

difference sampling, it will be very closely related.

We first show an extremely important fact about pψ in its invariance (up to scaling)

under the symplectic Fourier transform.

Fact 3.7. For any n-qubit pure state |ψ⟩ and any x ∈ F2n
2 , pψ(x) = 2np̂ψ(x).
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Proof.

p̂ψ(x) =
1

4n

∑
a∈F2n

2

(−1)[a,x]pψ(a)

=
1

4n

∑
a∈F2n

2

(−1)[a,x]cψ(a)cψ(a)

=
1

4n

∑
a∈F2n

2

(−1)[a,x]cψ(a)

(
⟨ψ|Wa|ψ⟩√

2n

)

=
1

4n

∑
a∈F2n

2

cψ(a)

(
⟨ψ|WxWaWx|ψ⟩√

2n

)
(Fact 2.15)

=
1

4n

∑
a∈F2n

2

cψ(a)cWxψWx(a)

=
1

4n
Tr[ψ(WxψWx)] (Lemma 2.17)

=
1

2n
pψ(x)

Note our slight difference in normalization from [GNW21]. One can also refer to

[GIKL23c, Proposition 3.3], where the normalization is consistent with this work, but uses the

standard Boolean Fourier transform rather than the symplectic one. Despite this difference,

the proof goes through in a similar way.

We now introduce the titular algorithmic primitive in Part I, Bell difference sampling

[Mon17, GNW21]. Let |Φ+⟩ := |00⟩+|11⟩√
2

be the Bell state. Then, the set of quantum states

{|Wx⟩ := (I ⊗Wx) |Φ+⟩ : x ∈ F2
2} (3.1)

forms an orthonormal basis of C2⊗C2, which we call the Bell basis. Bell difference sampling

an n-qubit state |ψ⟩ just means the following. First, take two copies of a pure state |ψ⟩.

Take the first qubit in each copy and measure them in the Bell basis. Repeat this for

each remaining pair of qubits. Let (ai, bi) denote the two-bit measurement outcome from

measuring the ith pair of qubits. Then, we denote the measurement outcome on the two

copies by x = (a1, . . . , an, b1, . . . , bn) ∈ F2n
2 . Repeat this once more with two fresh copies
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of |ψ⟩ to obtain a string y ∈ F2n
2 . Finally, output x + y.1 Historically, Bell difference

sampling has found use in algorithms for stabilizer states. However, Gross, Nezami, and

Walter proved that Bell difference sampling is meaningful for all quantum states. This will

be the first showcase of the power of symplectic Fourier analysis

Lemma 3.8 (Bell difference sampling, [GNW21, Theorem 3.2]). Let |ψ⟩ be an arbitrary n-

qubit pure state. Bell difference sampling corresponds to drawing a sample from the following

distribution:

qψ(x) := 4n(pψ ∗ pψ)(x) =
∑
y∈F2n

2

pψ(y)pψ(x+ y),

and uses four copies of |ψ⟩. We refer to qψ(x) as the Weyl distribution.

To prove Lemma 3.8, we will first need to prove an identity about the projectors onto

each measurement outcome. In particular, we will show that they can be expressed as a nice

summation over Weyl operators.

Lemma 3.9. For a ∈ F2n
2 , let Πa :=

∑
x∈F2n

2
|Wx⟩⟨Wx| ⊗ |Wx+a⟩⟨Wx+a| be the projector on

2n qubits such that Tr
[
Πa |ψ⟩⟨ψ|⊗4] = qψ(a). Then Πa can also be expressed as:

Πa =
1

4n

∑
x∈F2n

2

(−1)[a,x]W⊗4
x .

Proof. We will start by getting an expression for Π0 =
∑

x∈F2n
2
W⊗4
x . From there, we can use

Fact 2.15 to achieve our desired identity.

It is a well-known fact that the Bell state’s Weyl decomposition is

|Φ+⟩⟨Φ+| = II +XX − Y Y + ZZ

4
=
W⊗2

00 +W⊗2
10 −W⊗2

11 +W⊗2
01

4
=

1

4

∑
x∈F2

2

W⊗2
x (−1)bx

1Even when |ψ⟩ is a stabilizer stabilizer state, measuring two copies of |ψ⟩ in the Bell basis returns x ∈ F2n
2

with probability pψ(x+ a), where a ∈ F2n
2 is an unwanted shift. Bell difference sampling essentially cancels

out this unwanted shift a. See [Mon17, GNW21] for more detail.
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such that bx = 1x=11. We can use this to express |Wx⟩⟨Wx| as:

|Wx⟩⟨Wx| = (I ⊗Wx) |Φ+⟩⟨Φ+| (I ⊗Wx) (Eq. (3.1))

= (I ⊗Wx)

1

4

∑
y∈F2

2

W⊗2
y (−1)by

(I ⊗Wx)

=
1

4

∑
y∈F2

2

W⊗2
y (−1)[x,y]+by (Fact 2.15)

and |Wx⟩⟨Wx|⊗2 as:

|Wx⟩⟨Wx|⊗2 =
1

16

∑
y,z∈F2

2

W⊗2
y W⊗2

z (−1)[x,y+z]+by+bz .

Let us return to measurement probabilities. Notice that the probability of Bell differ-

ence sampling 0 on a single qubit is
∑

x∈F2
2
|Wx⟩⟨Wx|⊗2, which has the following nice identity:

∑
x∈F2

2

|Wx⟩⟨Wx|⊗2 =
∑
x∈F2

2

 1

16

∑
y,z∈F2

2

W⊗2
y W⊗2

z (−1)[x,y+z]+by+bz


=

1

16

∑
y,z∈F2

2

W⊗2
y W⊗2

z (−1)by+bz

∑
x∈F2

2

(−1)[x,y+z]


=

1

16

∑
y,z∈F2

2

W⊗2
y W⊗2

z (−1)by+bz(4 · 1y=z) (Lemma 3.2)

=
1

4

∑
x∈F2

2

W⊗4
x .

Since Π0 is simply the probability of sampling 0 on all n qubits, we can achieve our initial

goal and show that:

Π0 =
∑
x∈F2n

2

|Wx⟩⟨Wx|⊗2 =
n⊗
i=1

∑
x∈F2

2

|Wx⟩⟨Wx|⊗2 =
1

4n

n⊗
i=1

∑
x∈F2

2

W⊗4
x =

1

4n

∑
x∈F2n

2

W⊗4
x . (3.2)

54



Finally, observe that:

Πa :=
∑
x∈F2n

2

|Wx⟩⟨Wx| ⊗ |Wx+a⟩⟨Wx+a|

= (I ⊗ I ⊗ I ⊗Wa)

(
|Wx⟩⟨Wx| ⊗ |Wx⟩⟨Wx|

)
(I ⊗ I ⊗ I ⊗Wa)

= (I ⊗ I ⊗ I ⊗Wa)

 1

4n

∑
x∈F2n

2

W⊗4
x

(I ⊗ I ⊗ I ⊗Wa) (Eq. (3.2))

=
1

4n

∑
x∈F2n

2

(−1)[a,x]W⊗4
x (Fact 2.15),

thus completing the proof.

Using the identity from Lemma 3.9, we can combine it with our knowledge about the

symplectic Fourier transform to prove Lemma 3.8.

Proof of Lemma 3.8. By definition, for all x ∈ F2n
2 , Tr

[
Πx |ψ⟩⟨ψ|⊗4] is the probability of

getting x from Bell difference sampling.

qψ(x) = Tr
[
Πx |ψ⟩⟨ψ|⊗4]

=
1

4n
Tr

∑
y∈F2n

2

(−1)[x,y]W⊗4
y

 |ψ⟩⟨ψ|⊗4

 (Lemma 3.9)

=
1

4n

∑
y∈F2n

2

(−1)[x,y] ⟨ψ|Wy|ψ⟩2 ⟨ψ|Wy|ψ⟩2

=
∑
y∈F2n

2

(−1)[x,y]pψ(y)pψ(y)

=
1

4n

∑
y∈F2n

2

p̂ψ(y)p̂ψ(x+ y) (Fact 3.4)

=
∑
y∈F2n

2

pψ(y)pψ(x+ y) (Fact 3.7)
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3.3 Finding Generators Efficiently via Bell Difference Sampling

Throughout this work, we will want to find important subspaces of F2n
2 through Bell

difference sampling. Let’s call this important subspace S ⊆ F2n
2 for now. To learn what

S is, we want to Bell difference sample independent generators that span S. However, if

the probability mass of qψ is too heavily concentrated on a proper subspace of S, then we

may never get enough independent generators. Assuming this condition is not true (i.e.,

the “hardest” step is not too hard) then we can upper bound the number of Bell difference

samples to find generators of S.

Lemma 3.10. Let S be some subspace of F2n
2 . If qψ(x) is such that for all proper subspaces

T ⊂ S with dim(T ) = dim(S)− 1,

∑
x∈S\T

qψ(x) ≥ c

then 2
c

(
dim(S) + log 1

δ

)
Bell difference samples are sufficient to sample generators of S with

probability at least 1− δ.

Proof. Let m be the number of samples and let x1, ..., xm ∈ F2n
2 be the results of the Bell

difference sampling. Let Ti be the subspace of S spanned by all elements in {x1, . . . , xi}∩S,

with the convention that T0 is the trivial subspace. Define the indicator random variable Xi

as

Xi =

{
1 xi ∈ S \ Ti−1 or Ti−1 = S

0 otherwise.

Informally, Xi = 1 indicates a step at which the algorithm has made progress towards

sampling a complete set of generators for S. We need to show that with high probability,∑m
i=1Xi ≥ dim(S), as this guarantees that Tm = S.

56



By assumption on qψ and S, we have that for any assignment of X1, . . . , Xi−1,

E[Xi|X1, . . . , Xi−1] ≥ c, because xi is sampled with probability qψ(xi). Let γ = 1 − dim(S)
cm

.

Then, by the multiplicative Chernoff bound (Fact 2.2), we have

Pr

[
m∑
i=1

Xi < dim(S)

]
= Pr

[
m∑
i=1

Xi < (1− γ)cm

]
≤ exp

(
−γ2 cm

2

)
= exp

(
−
(
1− 2 dim(S)

cm
+

dim(S)2

c2m2

)
cm

2

)
≤ exp

(
−
(
1− 2 dim(S)

cm

)
cm

2

)
= exp

(
dim(S)− cm

2

)
(3.3)

Hence, choosing

m ≥ 2

c

(
dim(S) + log

1

δ

)
suffices to guarantee that Eq. (3.3) is at most δ.

3.4 Warm-up: Learning a Stabilizer State

To end this chapter on the basics of Bell Difference Sampling, we show how to use

it to efficiently learn stabilizer states as in [Mon17]. This simple algorithm is the both the

historical predecessor and the intuitive building block of much of the proceeding chapters,

so care should be taken to understand this algorithm properly.

To start we note that for a stabilizer state |ϕ⟩, pϕ is the uniform distribution over its

unsigned stabilizer group.

Lemma 3.11. For a stabilizer state |ϕ⟩, pϕ is the uniform distribution over Weyl(|ϕ⟩).

Proof. By definition of a stabilizer state, |ϕ⟩⟨ϕ| = 1
2n

∑
σ∈G σ for some stabilizer group G.

For every x such that ±Wx ∈ G, we note that pϕ(x) = 1
2n
|⟨ϕ|Wxϕ⟩|2 = 1

2n
. In turn, for
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every x such that ±Wx ̸∈ G, we get pϕ(x) = 0. A fancy way of summarizing this is that

pϕ(x) =
1
2n
1x∈Weyl(|ϕ⟩). This means that pϕ is the uniform distribution over Weyl(|ϕ⟩).

We now know that pϕ is nice and uniform, but what about qϕ? We next show that

the convolution does nothing to pϕ.

Lemma 3.12. For a stabilizer state |ϕ⟩, qϕ = pϕ.

Proof.

qϕ(x) =
∑
a∈F2n

2

pϕ(a)pϕ(a+ x)

=
1

2n

∑
a∈Weyl(|ϕ⟩)

pϕ(a+ x) (Lemma 3.11)

=
1

2n
1x∈Weyl(|ϕ⟩)

= pϕ(x) (Lemma 3.11)

We now have everything we need to learn |ϕ⟩. We present the algorithm for learning

stabilizer states given in [Mon17] using notation and tools from this dissertation.

We now prove the correctness of Algorithm 1.

Theorem 3.13. Algorithm 1 learns |ϕ⟩ with probability at least 1− δ and uses O(n+ log 1
δ
)

samples and O(n3 + n2 log 1
δ
) time.

Proof. A necessary condition to learning Stab(|ϕ⟩) is to find the generators of Weyl(|ϕ⟩). Let

S = Weyl(|ϕ⟩). Because ϕ is a stabilizer state, dim(S) = n. By Lemmas 3.11 and 3.12, our

Bell difference samples come uniformly from S, such that for all proper subspaces T ⊂ S,

∑
x∈S\T

qϕ(x) ≥
1

2
.
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Algorithm 1: Learning a stabilizer state [Mon17]

Input: 4n+ 4 log 1
δ
copies of |ϕ⟩

Promise: |ϕ⟩ is a stabilizer state
Output: Generators of Stab(|ϕ⟩)

1 Let m = 4n+ 4 log 1
δ

2 Let T = {}
3 repeat m times
4 Perform Bell difference sampling to obtain x ∈ F2n

2

5 Add x to T

6 Find generators of T , {g1, · · · gn} using Gaussian elimination on T
7 Let G = {}
8 foreach gi do
9 Add sgn(⟨ϕ|Wgi |ϕ⟩) ·Wgi to G

10 return G such that 1
2n

∑
σ∈⟨G⟩ σ = |ϕ⟩⟨ϕ|

By Lemma 3.10, we only need 4(n+log 1
δ
) Bell difference samples2 to get generators of S with

probability at least 1 − δ. By Gaussian elimination, we can find n independent generators

g1, · · · , gn ∈ F2n
2 such that their span is S.

Now all that’s left is to find the appropriate phases for {Wx : x ∈ S} to create

Stab(|ϕ⟩). For each generator gi ∈ F2n
2 we can simply measure ⟨ϕ|Wgi |ϕ⟩ and take the

appropriate sign correction to determine that sgn(⟨ϕ|Wgi |ϕ⟩) · Wgi ∈ Stab(|ϕ⟩). We now

have n independent generators of Stab(|ϕ⟩) and so have learned |ϕ⟩ with probability at

least 1 − δ. The total number of samples is m = O(n + log 1
δ
) and the time complexity is

O(mn2) = O(n3 + n2 log 1
δ
) since it is dominated by the cost of Gaussian elimination.

We remark that since stabilizer states require Θ(n2) bits to write down and each

sample consists of 2n bits, this algorithm is asymptotically tight in sample complexity.

2To get rid of the factor of 4, see [Mer07].
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Chapter 4

Symplectic Fourier Analysis and Bell Difference

Sampling

This chapter explores the relationship between Bell difference sampling and symplectic

Fourier analysis. It borrows heavily from [GIKL23c], [GIKL23b] and [GIKL23a], which were

all joint work with Sabee Grewal, Vishnu Iyer, and William Kretschmer.

We now prove identities and inequalities related to the characteristic distribution pψ

and Weyl distribution qψ that form the basic proof tools of the remainder of Part I. We

emphasize that the results in this chapter hold for all pure quantum states.

4.1 Bell Difference Sampling and the Symplectic Complement

We show that the mass on a subspace T ⊆ F2n
2 under pψ is proportional to the mass

on T⊥ under pψ. It should be considered one of the most powerful results in the entirety

of Part I. The idea is that Fact 3.7 means that pψ must exhibit a lot of structure that is

formalized in the following:

Theorem 4.1. Let T ⊆ F2n
2 be a subspace. Then

∑
a∈T

pψ(a) =
|T |
2n

∑
x∈T⊥

pψ(x).
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Proof. ∑
a∈T

pψ(a) =
∑
a∈T

∑
x∈F2n

2

p̂ψ(x)(−1)[a,x]

=
1

2n

∑
a∈T

∑
x∈F2n

2

pψ(x)(−1)[a,x] (Fact 3.7)

=
|T |
2n

∑
x∈F2n

2

pψ(x) · 1x∈T⊥ (Lemma 3.2)

=
|T |
2n

∑
x∈T⊥

pψ(x).

A similar result is true for qψ, due to Proposition 3.6. In words, we show that the

average probability mass on a subspace T under qψ is equal to the squared-ℓ2-norm of the

probability mass on T⊥ under pψ. It should be considered just as important as Theorem 4.1.

Theorem 4.2. Let T ⊆ F2n
2 be a subspace. Then

1

|T |
∑
a∈T

qψ(a) =
∑
x∈T⊥

pψ(x)
2.

Proof. ∑
a∈T

qψ(a) =
∑
a∈T

∑
x∈F2n

2

q̂ψ(x)(−1)[a,x]

= 4n
∑
a∈T

∑
x∈F2n

2

p̂ψ(x)
2(−1)[a,x] (Lemma 3.8, Proposition 3.6.)

=
∑
a∈T

∑
x∈F2n

2

pψ(x)
2(−1)[a,x] (Fact 3.7)

= |T |
∑
x∈T⊥

pψ(x)
2. (Lemma 3.2)

An important consequence below is that qψ is “smoother” than pψ on subspaces, in

that the probability mass on a subspace never increases upon convolution with itself.

Corollary 4.3. Let T ⊆ F2n
2 be a subspace. Then∑

a∈T

qψ(a) ≤
∑
a∈T

pψ(a).
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Proof. ∑
a∈T

qψ(a) = |T |
∑
x∈T⊥

pψ(x)
2 (Theorem 4.2)

≤ |T |
2n

∑
x∈T⊥

pψ(x) (pψ(x) ≤
1

2n
)

=
∑
a∈T

pψ(a). (Theorem 4.1)

4.2 On the Support of pψ and qψ

An equally important consequence is that the support of both pψ and qψ (as well

as any further self-convolutions of pψ) must lie entirely in the symplectic complement of

Weyl(|ψ⟩).

Lemma 4.4. The support of pψ(x) is contained in Weyl(|ψ⟩)⊥.

Proof. We show the mass of pψ on Weyl(|ψ⟩)⊥ is 1.∑
x∈Weyl(|ψ⟩)⊥

pψ(x) =
|Weyl(|ψ⟩)⊥|

2n

∑
x∈Weyl(|ψ⟩)

pψ(x) (Theorem 4.1)

=
|Weyl(|ψ⟩)⊥|

2n
|Weyl(|ψ⟩)|

2n
(By definition of Weyl(|ψ⟩))

= 1. (Fact 2.10)

Corollary 4.5. The support of qψ(x) is contained in Weyl(|ψ⟩)⊥.

Proof. Suppose x ̸∈ Weyl(|ψ⟩)⊥. We want to show that qψ(x) = 0. By the definition of qψ

and by Lemma 4.4,

qψ(x) =
∑
a∈F2n

2

pψ(a)pψ(x+ a) =
∑

a∈Weyl(|ψ⟩)⊥
pψ(a)pψ(x+ a),

because pψ(a) = 0 for a ̸∈ Weyl(|ψ⟩)⊥. In the right-most sum, since a ∈ Weyl(|ψ⟩)⊥, x+a /∈

Weyl(|ψ⟩)⊥ if and only if x ̸∈ Weyl(|ψ⟩)⊥. So, applying Lemma 4.4 again, pψ(x+ a) = 0 for

each term in the sum, implying that the total sum is 0.
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An implication of Corollary 4.5 and Fact 2.10, is that if there exists a subspace

T ⊆ F2n
2 such that

∑
x∈T qψ(x) = 1 (this also implies

∑
x∈T pψ(x) = 1 by Corollary 4.3) then

T⊥ ⊆ Weyl(|ψ⟩).

Corollary 4.6. Let T ⊆ F2n
2 be a subspace such that

∑
x∈T qψ(x) = 1. Then T⊥ ⊆ Weyl(|ψ⟩).

Proof. By Corollary 4.5, T ⊇ Weyl(|ψ⟩)⊥. By Fact 2.10, T⊥ ⊆ Weyl(|ψ⟩).

4.3 Concentration of pψ and qψ Implies Commutativity

We show that if a subspace of F2n
2 has exceptionally large pψ-mass (or qψ-mass), then

it must be coisotropic. This is important since unsigned stabilizer groups must be isotropic.

The idea will be that an important isotropic subgroup of F2n
2 can be associated with a

coisotropic subspace (via the symplectic complement) that has large probability mass. Thus,

we can learn these important isotropic subspaces by Bell sampling until we are confident we

have spanned its symplectic complement.

The first result is that a subspace whose pψ-mass is strictly greater than 3
4

is

coisotropic.

Lemma 4.7. Let H be a subspace of F2n
2 such that

∑
x∈H⊥

pψ(x) >
3

4
.

Then H is isotropic.

Proof. Let M := {x ∈ H : 2npψ(x) > 1/2}. By Fact 2.25, every pair of elements in M

commutes. Furthermore, every pair of elements in ⟨M⟩ (i.e., the span of M) also commute

by linearity of the symplectic product. Thus, if we can show that ⟨M⟩ = H then H is

isotropic.

63



Suppose for a contradiction that |M | ≤ |H|
2
. Then:

∑
x∈H⊥

pψ(x) =
|H⊥|
2n

∑
x∈H

pψ(x) (Theorem 4.1)

=
|H⊥|
2n

∑
x∈M

pψ(x) +
∑

x∈H\M

pψ(x)


≤ |H⊥|

2n

(
|H|
2

· 1

2n
+

|H|
2

· 1

2 · 2n

)
=

|H| · |H⊥|
4n

·
(
1

2
+

1

1

)
=

3

4
,

which contradicts the assumption of the lemma. So, |M | > |H|
2
. Since a proper subspace of

H can have at most |H|
2

elements, it follows that ⟨M⟩ = H and H is isotropic.

As one might expect, one can instead use Theorem 4.2 to show that any subspace

whose qψ-mass is strictly greater than 5
8
is also coisotropic. The proof follows nearly identi-

cally to Lemma 4.7 and is given for completeness.

Lemma 4.8. Let H be a subspace of F2n
2 such that

∑
x∈H⊥

qψ(x) >
5

8
.

Then H is isotropic.

Proof. Let M := {x ∈ H : 2npψ(x) > 1/2}. By Fact 2.25, every pair of elements in M

commutes. Furthermore, every pair of elements in ⟨M⟩ (i.e., the span of M) also commute

by linearity of the symplectic product. Thus, if we can show that ⟨M⟩ = H then H is

isotropic.
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Suppose for a contradiction that |M | ≤ |H|
2
. Then:

∑
x∈H⊥

qψ(x) = |H⊥|
∑
x∈H

pψ(x)
2 (Theorem 4.2)

= |H⊥|

∑
x∈M

pψ(x)
2 +

∑
x∈H\M

pψ(x)
2


≤ |H⊥|

(
|H|
2

· 1

4n
+

|H|
2

· 1

4 · 4n

)
=

|H| · |H⊥|
4n

·
(
1

2
+

1

8

)
=

5

8
,

which contradicts the assumption of the lemma. So, |M | > |H|
2
. Since a proper subspace of

H can have at most |H|
2

elements, it follows that ⟨M⟩ = H and H is isotropic.

4.4 On the Relationship between Bell Difference Sampling and
Stabilizer Fidelity

A crucial part of the analysis of algorithms in Part I will be to relate Bell difference

sampling to stabilizer fidelity. Even when stabilizer fidelity is not the important quantity in

a particular context, it can still be used as a distance measure to the properties that we do

explicitly care about (this will be the case in Chapter 7). In this section, we detail many

of the shared proofs/techniques, all of which (explicitly or implicitly) rely on Theorem 4.1

and Theorem 4.2. A simplified summary of the main results are that for a state |ψ⟩ whose

stabilizer fidelity is realized by |ϕ⟩ then

FS(|ψ⟩)2 ≤
∑
x∈S∗

pψ(x) ≤ FS(|ψ⟩)

and

FS(|ψ⟩)4 ≤
∑
x∈S∗

qψ(x) ≤ FS(|ψ⟩)

where S∗ := Weyl(|ϕ⟩).
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4.4.1 Action of Clifford Circuits on Bell Difference Sampling

It will oftentimes be easier to imagine that we are working with the computational

basis. Due to the symmetry of the stabilizer states, one should be able to do this without

loss of generality. We provide two basic lemmas that formalize this idea, allowing us to

suppose without loss of generality that |0n⟩ maximizes stabilizer fidelity. See Section 2.6 for

preliminary details on Clifford circuits.

The first lemma concerns our ability to map our state (as well as proper subspaces)

to {I, Z}⊗n.

Lemma 4.9. Given an n-qubit stabilizer state |ϕ⟩, let S = Weyl(|ϕ⟩) be its unsigned stabilizer

group, and let T ⊆ S be a subspace of dimension n− t. Then there exists a Clifford circuit

C such that C |ϕ⟩ = |0n⟩, C(S) = 0n × Fn2 , and C(T ) = 0n+t × Fn−t2 .

Proof. Because the Clifford group acts transitively on stabilizer states, there exists a Clifford

circuit C such that C |ϕ⟩ = |0n⟩. Because S = {x ∈ F2n
2 : ⟨ϕ|Wx |ϕ⟩ = ±1}, this C necessarily

maps S to C(S) = {x ∈ F2n
2 : ⟨ϕ|C†WxC |ϕ⟩ = ±1} = 0n × Fn2 . So, it only remains to show

that C can be chosen so as to map T to 0n+t × Fn−t2 while preserving these properties. This

holds because a CNOT gate between qubits i and j in its action on F2n
2 maps (0n, x) ∈ F2n

2

to (0n,Mx) where M ∈ GLn(F2) is an elementary matrix (in particular, a matrix equal to

the identity except with the (i, j) entry equal to 1). Hence, CNOT gates between arbitrary

qubits generate all of GLn(F2). So, we can choose CNOT gates so as to map T to an arbitrary

subspace of 0n × Fn2 of the same dimension, while preserving |0n⟩ and 0n × Fn2 .

The second lemma details how pψ changes after a clifford circuit is applied to |ψ⟩.

Lemma 4.10. Let |ψ⟩ be an n-qubit quantum state, let C be a Clifford circuit, and define

|ψ′⟩ := C |ψ⟩. Then

pψ′(x) = pψ(C
†(x))
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for all x ∈ F2n
2 .

Proof.

2npψ′(x) = ⟨ψ|C†WxC|ψ⟩
2
= 2npψ(C

†(x)).

4.4.2 Identities for Weyl Decompositions of Computational Basis States

Now that Section 4.4.1 allows us to work with computational basis states, we give

some useful identities for these states. The techniques will be very similar to doing Boolean

Fourier analysis (using the normal inner product over F2 rather than the symplectic product).

Fact 4.11.

|x⟩⟨x| = 1

2k

∑
y∈Fk2

Zy(−1)x·y

where x ∈ Fk2.

Proof. Since |x⟩ is a stabilizer state and there are 2k Weyl operators in this decomposition,

we just need to show that (−1)x·yZy stabilizes |x⟩ for all y ∈ Fk2.

(−1)x·yZy |x⟩ = (−1)x·y(−1)x·y |x⟩ = |x⟩

Another way of seeing this is that since |x⟩⟨x| is a 2k × 2k diagonal matrix with a

single element and Zy form the parity functions over the diagonal, this is simply the Boolean

Fourier decomposition of the indicator function

We now prove a relation between sums over products of basis state projections and

sums products of Pauli-Z strings.

Fact 4.12. ∑
x∈Fk2

|x⟩⟨x| ⊗ |x⟩⟨x| = 1

2k

∑
x∈Fk2

Zx ⊗ Zx.
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Proof.

∑
x∈Fk2

|x⟩⟨x| ⊗ |x⟩⟨x| =
∑
x∈Fk2

1

4k

∑
a∈Fk2

Za(−1)a·x

∑
b∈Fk2

Zb(−1)b·x

 (Fact 4.11)

=
1

4k

∑
a,b∈Fk2

Za ⊗ Zb
∑
x∈Fk2

(−1)(a+b)·x

=
1

2k

∑
a∈Fk2

Za ⊗ Za.

4.4.3 Stabilizer Fidelity Implies Concentration of pψ

Let |ψ⟩ be an arbitrary quantum state and let |ϕ⟩ be a stabilizer state that maximizes

stabilizer fidelity with |ψ⟩. It is easy to see that if S∗ := Weyl(|ϕ⟩) and ψ is itself a stabilizer

state (such that |ψ⟩ = |ϕ⟩), then the sum of pψ over S∗ will be 1. Informally, it should be the

case that if the stabilizer fidelity of |ψ⟩ is still large, then
∑

x∈S∗ pψ(x) should also remain

close to 1. Now, we show that the pψ-mass on S∗ is bounded below by the squared stabilizer

fidelity of |ψ⟩.

Lemma 4.13. Given an n-qubit state |ψ⟩, let |ϕ⟩ be a stabilizer state that maximizes the

stabilizer fidelity with |ψ⟩, and let S∗ = Weyl(|ϕ⟩). Then

∑
x∈S∗

pψ(x) ≥ FS(|ψ⟩)2.

Proof. Since |ϕ⟩ maximizes the stabilizer fidelity with |ψ⟩, we can write FS(|ψ⟩) = |⟨ϕ|ψ⟩|2.

Let C be a Clifford circuit from Lemma 4.9 such that C |ϕ⟩ = |0n⟩ and C(S∗) = 0n × Fn2

(the choice of T is irrelevant). Now let |ψ′⟩ = C |ψ⟩. Based on Lemma 4.10,

∑
x∈S∗

pψ(x) =
∑

x∈C(S∗)

pψ′(x) =
∑
x∈Fn2

pψ′(0n, x).
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It remains to lower bound
∑

x∈Fn2
pψ′(0n, x).

∑
x∈Fn2

pψ′(0n, x) =
1

2n

∑
x∈Fn2

⟨ψ′|Zx|ψ′⟩2

≥ 1

4n

∑
x∈Fn2

⟨ψ′|Zx|ψ′⟩

2

=
1

4n
(2n ⟨ψ′|0n⟩⟨0n|ψ′⟩)2 (Fact 4.11)

= |⟨ψ|C†|0n⟩|4

= |⟨ψ|ϕ⟩|4 = FS(|ψ⟩)2.

The second line follows from Cauchy-Schwarz.

Since we know that
∑

x∈Fn2
pψ′(0n, x) ≥ FS(|ψ⟩)2, this tells us that

∑
x∈S∗ pψ(x) ≥

FS(|ψ⟩)2 as well.

We can also generalize this result to arbitrary subspaces of S∗. This will become

relevant later in Chapter 6.

Corollary 4.14. Given an n-qubit state |ψ⟩, let |ϕ⟩ be a stabilizer state that maximizes the

stabilizer fidelity, and let S∗ = Weyl(|ϕ⟩). Let T ⊆ S∗ be a subspace of S∗. Then

∑
x∈T

pψ(x) ≥
|T |
2n
FS(|ψ⟩)2.

Proof.

∑
x∈T

pψ(x) =
|T |
2n

∑
x∈T⊥

pψ(x) (Theorem 4.1)

≥ |T |
2n

∑
x∈S∗

pψ(x) (∀x, pψ(x) ≥ 0)

=
|T |
2n
FS(|ψ⟩)2, (Lemma 4.13)

where we have used the fact that S∗ ⊆ T⊥.
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Finally, for completeness we state the following related result for qψ by using Theo-

rem 4.2.

Corollary 4.15. Given an n-qubit state |ψ⟩, let |ϕ⟩ be a stabilizer state that maximizes the

stabilizer fidelity, and let S∗ = Weyl(|ϕ⟩). Let T ⊆ S∗ be a subspace of S∗. Then

∑
x∈T

qψ(x) ≥
|T |
2n
FS(|ψ⟩)4.

Proof.

∑
x∈T

qψ(x) = |T |
∑
x∈T⊥

pψ(x)
2 (Theorem 4.2)

≥ |T |
∑
x∈S∗

pψ(x)
2 (∀x, pψ(x) ≥ 0)

≥ |T |
2n

(∑
x∈S∗

pψ(x)

)2

(Cauchy-Schwarz)

=
|T |
2n
FS(|ψ⟩)4, (Lemma 4.13)

where we again use the fact that S∗ ⊆ T⊥ as in the proof of Lemma 4.13.

4.4.4 Concentration of pψ Implies Stabilizer Fidelity

We will now show that the converse relations are also true, in that if the pψ mass is

large over an isotropic subspace, than this also implies something about stabilizer fidelity.

The first instance of such a result comes from [GNW21], where the isotropic subspace needs

to also be Lagrangian.

Proposition 4.16 ([GNW21] Theorem 3.3). Let S ⊂ F2n
2 be some Lagrangian subspace.

FS(|ψ⟩) ≥
∑
x∈S

pψ(x).

We will give a slightly different proof from [GNW21] that will allow us to generalize

more easily to results for isotropic subspaces that are not Lagrangian later in Chapter 7.
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First we prove that the pψ-mass on an isotropic subspace has a nice operational

interpretation.

Lemma 4.17. Let |ψ⟩ be an n-qubit state, and let T = 0n+t × Fn−t2 . Upon measuring the

last n − t qubits in the computational basis on 2 copies of |ψ⟩, the probability of observing

the same string x ∈ Fn−t2 twice (i.e., the collision probability) is

2t
∑
x∈T

pψ(x).

Proof. The probability of observing some x ∈ Fn−t2 twice is

∑
x∈Fn−t2

⟨ψ|
(
I⊗t ⊗ |x⟩⟨x|

)
|ψ⟩2 = ⟨ψ|⊗2

 ∑
x∈Fn−t2

I⊗t ⊗ |x⟩⟨x| ⊗ I⊗t ⊗ |x⟩⟨x|

 |ψ⟩⊗2

= ⟨ψ|⊗2

 1

2n−t

∑
x∈Fn−t2

I⊗t ⊗ Zx ⊗ I⊗t ⊗ Zx

 |ψ⟩⊗2

=
1

2n−t

∑
x∈Fn−t2

⟨ψ|I⊗t ⊗ Zx|ψ⟩2

= 2t
∑
x∈T

pψ(x).

The third step follows from Fact 4.12 by treating the I⊗t as constants.

It will turn out that the collision probability lower-bounds the stabilizer fidelity.

Intuitively, if the collision probability is very high, then |ψ⟩ must be close to a computational

basis state, which is a special kind of stabilizer state. Since the collision probability is related

to pψ via Lemma 4.17, we should then be able to lower-bound the stabilizer fidelity by pψ.

We now formalize this intuition in our proof of Proposition 4.16.

Proof of Proposition 4.16. Let C be a Clifford circuit from Lemma 4.9 such that C |ϕ⟩ = |0n⟩

and C(S) = 0n×Fn2 (the choice of T is irrelevant). Now let |ψ′⟩ = C |ψ⟩. From Lemma 4.10,∑
x∈S

pψ(x) =
∑

x∈C(S∗)

pψ′(x) =
∑
x∈Fn2

pψ′(0n, x).
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If we can show that

|⟨ψ|ϕ⟩|2 = |⟨ψ|C|0n⟩|2 = max
x∈Fn2

|⟨ψ′|x⟩|2 ≥
∑
x∈Fn2

pψ′(0, x),

then we are done. First, we can always perform the following decomposition |ψ′⟩ =∑
x∈Fn2

αx |x⟩ such that the sum of the |αx|2 is 1. Using this decomposition, we find:

= max
x∈Fn2

|⟨ψ′|x⟩|2 = max
x∈Fn2

|αx|2

= max
x∈Fn2

|αx|2 ·
∑

x∈Fn−t2

|αx|2

≥
∑
x∈Fn2

|αx|4.

Observe that
∑

x∈Fn2
|αx|4 is precisely the collision probability when measuring all n

qubits of |ψ⟩ in the computational basis. Hence, by Lemma 4.17 with t = 0,∑
x∈Fn2

|αx|4 =
∑
x∈S

pψ(x).

We will now informally state a generalization of Proposition 4.16 to all isotropic

subspaces. While the statement is a bit convoluted, the idea is that if an isotropic subspace

T has near maximal pψ-mass then it is close to a state |ψ̂⟩ whose unsigned stabilizer group is

T (i.e., acts like a stabilizer state relative to T ). As such, if T is in fact a Lagrangian subspace,

the only such |ψ̂⟩ are stabilizer states and we recover Proposition 4.16. We defer the formal

statement and proof to Corollary 7.9, where we will also need to include computational

requirements.

Corollary 4.18 (Informal version of Corollary 7.9). Let T be an isotropic subspace of di-

mension n− t. Then there exists a state |ψ̂⟩ with T ⊆ Weyl(|ψ̂⟩) such that

|⟨ψ|ψ′⟩|2 ≥
∑
x∈T

pψ(x).

Finally, we note that, due to Corollary 4.3, all of these lower bounds also hold for qψ.
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Chapter 5

Tolerant Property Testing of Stabilizer States

This chapter is based on both [GIKL23c] and Section 6 of [GIKL23b], which were

joint work with Sabee Grewal, Vishnu Iyer, and William Kretschmer. The work is presented

non-chronologically with each section being from one or the other. Some of the preliminary

results were moved to Chapters 2 to 4.

In this chapter, we give a tolerant property testing algorithm for stabilizer states. In

the tolerant property testing model [PRR06], which generalizes ordinary property testing

[RS96, GGR98], a tester must accept objects that are at most ε1-close to having some

property and reject objects that are at least ε2-far from having that same property for

0 ≤ ε1 < ε2 ≤ 1. The standard property testing model is recovered when ε1 = 0, and

the relaxed completeness condition generally makes tolerant testing a much harder problem.

Nonetheless, the tolerant testing model is natural to consider in certain error models, such

as in the presence of imprecise quantum gates.

Our algorithm takes copies of an n-qubit quantum state |ψ⟩ and decides whether |ψ⟩

has stabilizer fidelity at least α1 or at most α2, promised that one of these is the case. Note

that we have taken α1 := 1− ε1 and α2 := 1− ε2 for notational simplicity.

Theorem 5.1 (Informal version of Theorem 5.6). Let |ψ⟩ be an n-qubit pure state, and Let

α1, α2 ∈ [0, 1] such that α2 <
4α6

1−1

3
, and define γ := α6

1 − 3α2+1
4

. There is an algorithm that

uses O(1/γ2) copies of |ψ⟩, O(n/γ2) time, and decides whether |ψ⟩ has stabilizer fidelity at

least α1 or at most α2, promised that one of these is the case.
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While our algorithm does not work for all settings of ε1 and ε2—giving such an

algorithm is an open problem—our algorithm does significantly improve over prior work. In

Section 5.3, we compare the parameter regimes in which our algorithm works to the existing

literature and show those regimes visually in Fig. 5.1.

We note that this tolerant testing algorithm results solely from an improvement of the

analysis of the stabilizer state property testing algorithm due to Gross, Nezami, and Walter

[GNW21] (hereafter, the “GNW algorithm”). It is also the basis for the distinguishing

algorithm in Section 8.2.

5.1 The GNW Algorithm

We briefly describe the GNW algorithm, which works as follows. Perform Bell differ-

ence sampling on the input state to get a string x ∈ F2n
2 . Then measure the corresponding

Weyl operator Wx twice and accept if the result is the same across both measurements. The

algorithm uses six copies of the input state.

[GIKL23c] introduced the following statistic:

η := E
x∼qψ(x)

[2npψ(x)] = 4n
∑
x∼F2n

2

pψ(x)
3,

and showed that it can be efficiently estimated. Let paccept denote the acceptance probability

of the GNW algorithm. It is easy to show that η = 2paccept − 1 (see [GNW21, Page 19]).

[GNW21] showed that for any pure quantum state |ψ⟩,

2η − 1 ≤ FS(|ψ⟩).

Note that for a stabilizer state η = 1, since qψ will only be supported on Weyl(|ψ⟩) (see

Lemma 3.11). This gave an efficient testing algorithm that could distinguish between stabi-

lizer states and states with stabilizer fidelity bounded away from 1.
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We greatly improve on the analysis of this algorithm, improving both the completeness

and soundness. As a first step, we relate η to the Fourier coefficients of pψ. Note that this

analysis closely resembles the BLR linearity test [BLR93] (see also [O’D14, Section 1.6]).

Fact 5.2. Let |ψ⟩ be an n-qubit pure state. Then,

η = 4n
∑
x∈F2n

2

p(x)3.

Proof.

η = E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= 2n E

x∼qψ
[pψ(x)]

= 2n
∑
x∈F2n

2

pψ(x)qψ(x)

= 8n
∑
x∈F2n

2

pψ(x)(pψ ∗ pψ)(x)

=
32n

4n

∑
x∈F2n

2

[pψ(x)(pψ ∗ pψ)(x)]

= 32n
∑
x∈F2n

2

p̂ψ(x)p̂ψ ∗ pψ(x)) (Fact 3.4)

= 32n
∑
x∈F2n

2

p̂ψ(x)
3. (Proposition 3.6)

= 4n
∑
x∈F2n

2

p(x)3 (Fact 3.7)

5.1.1 Improved Completeness Analysis

Intuitively, η measures how concentrated the pψ(x) are. Based on Lemma 3.11, we

can again see that η = 1 for a stabilizer state, since the p(x) are maximally concentrated.

At a high level, if |ψ⟩ is “close” to a stabilizer state then pψ(x) should be “somewhat”

concentrated. We will formalize this idea by lower-bounding η by stabilizer fidelity using the

relationship developed in Section 4.4.3.
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Proposition 5.3.

η ≥ FS(|ψ⟩)6

Proof. Let |ϕ⟩ be a stabilizer state that maximizes the stabilizer fidelity, and let S∗ =

Weyl(|ϕ⟩).

η = 4n
∑
x∈F2n

2

pψ(x)
3 (Fact 5.2)

≥ 4n
∑
x∈S∗

pψ(x)
3

≥

(∑
x∈S∗

pψ(x)

)3

(Cauchy-Schwarz)

≥ FS(|ψ⟩)6 (Lemma 4.13)

The second line follows from the fact that pψ(x) ≥ 0 for all x ∈ F2n
2 .

5.1.2 Improved Soundness Analysis

At a high level, our proof is similar to [GNW21] and uses the results found in Sec-

tion 4.4.4. The improvement comes from using the identity η = 4n
∑

x pψ(x)
3, which was

unknown to [GNW21]. Instead, they (implicitly) used the bound η ≤ 2n
∑

x pψ(x)
2 in their

proof.

Proposition 5.4. Let |ψ⟩ be an n-qubit pure state. Then

4η − 1

3
≤ FS(|ψ⟩).
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Proof. Let M := {x ∈ F2n
2 : 2npψ(x) > 1/2}. Then

∑
x∈M

pψ(x) = Pr
x∼pψ

[x ∈M ]

= Pr
x∼pψ

[2np(x) > 1/2] (Definition of M)

= Pr
x∼pψ

[4np2(x) > 1/4]

= 1− Pr
x∼pψ

[4np2(x) ≤ 1/4]

= 1− Pr
x∼pψ

[1− 4np2(x) ≥ 3/4]

≥ 1− 4

3

(
1− E

x∼pψ
[4np2(x)]

)
(Markov’s Inequality)

= 1− 4

3
(1− η)

=
4η − 1

3
.

To complete the proof, we note that M must commute by Fact 2.25. Because pψ(x) ≥ 0, we

can arbitrarily extend M to the Lagrangian subspace S ⊇M such that
∑

x∈S pψ(x) ≥
4η−1
3

.

Finally, we apply Proposition 4.16 to lower-bound the stabilizer fidelity by

FS(|ψ⟩) ≥
∑
x∈S

pψ(x) ≥
4η − 1

3
.

5.2 Tolerantly Testing Stabilizer States

In the previous section, we proved that for all quantum states |ψ⟩,

4η − 1

3
≤ FS(|ψ⟩) ≤ η1/6.

To simplify notation, let α1 := 1 − ε1 and α2 := 1 − ε2. Observe that if FS(|ψ⟩) ≥ α1 then

η ≥ α6
1, and if FS(|ψ⟩) ≤ α2 then η ≤ 3α2+1

4
. This is the basis of our testing algorithm.

Specifically, as long as

α6
1 −

3α2 + 1

4
≥ 1

poly(n)
,
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then we can efficiently distinguish the two cases simply by estimating η. For the remainder

of this section, define

γ := α6
1 −

3α2 + 1

4
.

A more general form of the algorithm is stated as Algorithm 2.

Algorithm 2: η distinguishing

Input: 48 log(2/δ)/γ2 copies of |ψ⟩
Promise: Either case (i): η ≥ β1 or case (ii): η ≤ β2, for α1, α2 ∈ [0, 1] such that

γ > 0
Output: 1 if case (i) holds and 0 if case (ii) holds, with probability at least 1− δ

1 Let m = 8 log(2/δ)
γ2

.

2 repeat m times
3 Perform Bell difference sampling to obtain Wx ∼ qψ.

4 Perform the measurement W⊗2
x on |ψ⟩⊗2. Let Xi ∈ {±1} denote the

measurement outcome.
5 Set η̂ = 1

m

∑
iXi. Output 1 if η̂ > β1 − γ

2
and 0 otherwise.

Lemma 5.5. For γ > 0 such that γ = β1 − β2, Algorithm 2 distinguishes between states

with η ≥ β1 and states with η ≤ β2. It uses 48 log(2/δ)/γ2 copies of the input state,

O(n log(1/δ)/γ2) time, and succeeds with probability at least 1− δ.

Proof. Algorithm 2 fails when |η̂ − η| ≥ γ/2. By the definition of η = Ex∼qψ [2
npψ(x)], each

Xi is an unbiased estimator of η and so is η̂. Therefore, by Hoeffding’s inequality (Fact 2.1),

Pr[Algorithm 2 fails] = Pr[|η̂ − η| ≥ γ/2] ≤ 2e−mγ
2/8 = δ.

The number of copies follows from the fact that Bell difference sampling consumes 4

copies of the input state, the measurement in Step 4 of Algorithm 2 consumes 2 copies of the

input state, and that the loop is repeated m times. The running time is clearly O(mn).

We now apply our relationships between η and FS .
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Figure 5.1: The shaded regions indicate the parameter regimes of α1 and α2 that are per-
missible by the GNW algorithm (green) and Algorithm 2 (blue). The orange region shows
the parameter regime that is permissible if Algorithm 2 is analyzed using the looser bound
2η − 1 ≤ FS(|ψ⟩) from [GNW21]. Thus, the difference between the orange and blue regions
illustrates the improvement due to Proposition 5.4.

Theorem 5.6. For γ > 0 such that γ = α6
1− 3α2+1

4
, Algorithm 2 distinguishes between states

with FS(|ψ⟩) ≥ α1 and states with FS(|ψ⟩) ≤ α2. It uses 48 log(2/δ)/γ2 copies of the input

state, O(n log(1/δ)/γ2) time, and succeeds with probability at least 1− δ.

Proof. Set β1 = α6
1 and β2 = 3η+1

4
by Propositions 5.3 and 5.4 respectively. Then apply

Lemma 5.5.

5.3 Parameter Regime Discussion

We conclude this chapter by comparing the regime in which our algorithm works

with prior work (namely, the GNW algorithm). We first establish the values of α1 and

α2 in which the GNW algorithm works. As mentioned above, the GNW algorithm proved
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that for any quantum state |ψ⟩, 2η − 1 ≤ FS(|ψ⟩). Additionally, since the GNW algorithm

uses 6 copies of the input state and accepts stabilizer states with probability 1, it follows

that 1− 6
√

1− FS(|ψ⟩) ≤ paccept, where we use the subadditivity of the trace distance (see

Fact 2.6), and the ability to convert to trace distance from fidelity and back for pure states

using Fact 2.7. Finally, using the fact that η = 2paccept−1, we get FS(|ψ⟩) ≤ 1
144

(2η−η2+143).

Repeating the analysis from Section 5.2, we get that the GNW algorithm works as long as

1− 12
√
1− α1 >

α2 + 1

2
,

whereas, as shown earlier, our algorithm works as long as

α6
1 >

3α2 + 1

4
.

This is a significant improvement, which is shown visually in Fig. 5.1.

5.4 On the Tightness of Our Completeness Analysis

We now argue that the first part of Proposition 5.3 is polynomially-close to optimal.

We begin by explicitly computing the stabilizer extent and stabilizer fidelity of Clifford magic

states. The two technical ingredients involved in the computation are due to Bravyi et al.

[BBC+19].

Fact 5.7 ([BBC+19, Proposition 2]). Let |ψ⟩ be a Clifford magic state. Then, ξ(|ψ⟩) =

FS(|ψ⟩)−1.

Fact 5.8 ([BBC+19, Proposition 1]). Let {|ψ1⟩ , |ψ2⟩ , . . . , |ψL⟩} be any set of states such that

each state |ψj⟩ describes a system of at most 3 qubits. Then,

ξ(|ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψL⟩) =
∏
i

ξ(|ψi⟩).

It is well known that the k-fold tensor product of |T ⟩ := |0⟩+eiπ/4|1⟩√
2

is a Clifford magic

state. Using the facts above, we can exactly compute the stabilizer extent and stabilizer

fidelity of |T⊗n⟩.
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Fact 5.9.

ξ(|T⊗n⟩) =
(
cos

π

8

)−2n

and FSm(|T⊗n⟩) =
(
cos

π

8

)2n
.

Proof. By Fact 5.8, the stabilizer extent of |T⊗n⟩ is simply the stabilizer extent of |T ⟩ raised

to the power n. By Fact 5.7, the stabilizer extent is the inverse of the stabilizer fidelity.

Hence, the result follows simply by showing that the stabilizer fidelity of |T ⟩ is cos2 π
8
, which

can be verified by explicit calculation over the 6 different 1-qubit stabilizer states.

Next, we compute η for the state |T⊗n⟩.

Claim 5.10. Let |ψ⟩ = |T⊗n⟩ and define η := Ex∼qψ [2
npψ(x)]. Then, η = (5/8)n.

Proof. We begin by writing out |T ⟩⟨T | as a sum of Pauli matrices. By definition,

|T ⟩⟨T | = 1

2

(
I +

1√
2
X +

1√
2
Y

)
.

We wish to compute
∑

x∈F2n
2
pψ(x)

3. We know that every such Pauli with nonzero

pψ(x) is a tensor product combination of I, X, and Y , so we enumerate over the number of

indices where an X or Y appear.∑
x∈F2n

2

pψ(x)
3 =

1

23n

n∑
k=0

(
n

k

)
1

23k
· 2k = 1

8n

n∑
k=0

(
n

k

)
1

4k
=

(
5

32

)n
.

Thus, by Fact 5.2,

η = 4n
∑
x∈F2n

2

pψ(x)
3 =

(
5

8

)n
.

Combining Claim 5.10 with Proposition 5.3, we have

FS(|ψ⟩) ≤ η1/c =

(
5

8

)n/c
for c = 6. Improving our completeness amounts to lowering the value of c. But, from

Fact 5.9, we know that FS(|T⊗n⟩) =
(
cos π

8

)2n
. Combining the two statements gives(

cos
π

8

)2n
≤ (5/8)n/c.
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c =
log 5

8

2 log cos(π
8
)
≈ 2.97 is then minimum c that does not violate this inequality. Hence, one

cannot hope for much more than a quadratic improvement in our completeness analysis.

5.5 Improvements via State Preparation Unitary

When given access to a state preparation unitary for |ψ⟩ (and its inverse), de-

noted by U and U †, we can improve the sample and time complexities of our algorithm

to O (log(1/δ)/γ) and O (n log(1/δ)/γ), respectively, at the cost of O (log(1/δ)/γ) queries to

U and U †.

Access to U and U † allows us to run quantum amplitude estimation (QAE) as a

subroutine in our algorithm. Recall the well-known result of Brassard, Høyer, Mosca, and

Tapp:

Theorem 5.11 (Quantum Amplitude Estimation (Theorem 12 in [BHMT02])). Let Π be a

projector and |ψ⟩ be an n-qubit pure state such that ⟨ψ|Π|ψ⟩ = η. Given access to the unitary

transformations RΠ = 2Π− I and Rψ = 2 |ψ⟩⟨ψ| − I, there exists a quantum algorithm that

outputs η̂ such that

|η̂ − η| ≤
2π
√
η(1− η)

m
+
π2

m2

with probability at least 8
π2 . The algorithm makes m calls to RΠ and Rψ.

Corollary 5.12. Let Π, |ψ⟩, RΠ, and Rψ be the same as in Theorem 5.11. There exists a

quantum algorithm that outputs η̂ such that

|η̂ − η| ≤ ε

with probability at least 8
π2 . The algorithm makes no more than

π

√
η(1− η) + ε

ε

calls to RΠ and Rψ.

82



Proof. By Theorem 5.11, this will require m queries, where m is a solution to the following

quadratic equation:

2π
√
η(1− η)

m
+
π2

m2
≤ ε⇒ m ≥ π

√
η(1− η) + ε

ε
≥ π

√
η(1− η) +

√
η(1− η) + ε

2ε
.

With that, we are ready to explain the modifications to Algorithm 2 that achieves a

quadratic speedup in the dependency on γ. Recall the Bell difference sampling projectors

on measurement outcome x ∈ F2n
2 as1

Πx :=
∑
y∈F2n

2

|Wy⟩⟨Wy| ⊗ |Wx+y⟩⟨Wx+y|

such that qψ(x) = ∥Πx |ψ⊗4⟩∥.2 We can also perform the projective measurement Pψ,x :=

Wx |ψ⟩⟨ψ|Wx = WxU |0⟩⟨0|U †Wx, where this measurement is performed by applyingWx, U
†,

and then measuring in the computational basis. We can entangle Πx and Pψ,x to form the

following projector:

M =
∑
x∈F2n

2

Πx ⊗ Pψ,x.

Building M involves controlled applications of Wx according to the Bell difference sampling

outcome. Observe that

⟨ψ⊗5|M |ψ⊗5⟩ =
∑
x∈F2n

2

⟨ψ⊗4|Πx|ψ⊗4⟩ · ⟨ψ|Pψ,x|ψ⟩ = E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
= η.

Hence, we can run QAE with the input projector M and the input state |ψ⊗5⟩, and the

output will be an estimate of η whose accuracy depends on m, the number of total calls to

RΠ and Rψ.

1See Section 3.2 for details and see Eq. (3.1) for a definition of |Wx⟩.
2Indeed, this is the way Gross, Nezami, and Walter [GNW21] introduce Bell difference sampling.

83



5.5.1 Additive Distance

We now show how to use Quantum Amplitude Estimation to achieve a quadratic

speedup in terms of γ. Like Section 5.2, we start with the more general problem of distin-

guishing η then use Propositions 5.3 and 5.4 to relate it to fidelity.

Lemma 5.13. Let β1 > β2 be parameters in [0, 1] let γ = β1−β2. Let |ψ⟩ be an unknown n-

qubit pure state prepared by a unitary U . There exists a quantum algorithm that distinguishes

whether |ψ⟩ is a state with η at least β1 or a state with η less than β2, promised that one of

these is the case. The algorithm uses O

(
log(1/δ)

√
γ+max{β1(1−β1),β2(1−β2}

γ

)
applications of

either U or U † and time O

(
n log(1/δ)

√
γ+max{β1(1−β1),β2(1−β2}

γ

)
, and distinguishes the two

cases with success probability at least 1− δ.

Proof. The algorithm is the same as Algorithm 2, but with estimation of η done using state

preparation unitaries.

Proving the sample complexity bound will mimic Theorem 5.6. Suppose |ψ⟩ is a state

with η at least β1. For our algorithm to succeed, recall from the proof of Theorem 5.6 that

|η − η̂| ≤ |η − β1 + β2
2

| ⇒ η̂ ≥ β1 − γ/2 =
β1 + β2

2
.

Therefore, we can run QAE with a fixed value of m (to be specified later) for an estimate of

η whose accuracy is within ±
(
η − β1+β2

2

)
. By Corollary 5.12,

m ≥ π

√
η(1− η) + η − β1+β2

2

η − β1+β2
2

(5.1)

queries suffice. The chosen value of m must work for all η ∈ [β1, 1]. Note that Eq. (5.1) is

monotonically decreasing for η ∈ [β1, 1), and is therefore maximized by β1 within that range.

To succeed with probability at least 8
π2 ,

m ≥ π

√
β1(1− β1) + γ

γ
≥ π

√
β1(1− β1) + β1 − β1+β2

2

β1 − β1+β2
2
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calls to RΠ and Rψ suffices.

Now suppose |ψ⟩ is a state with η ≤ β2. Using Corollary 5.12 as long as we have

m ≥ π

√
β2(1− β2) + γ

γ
≥ π

√
β2(1− β2) +

β1+β2
2

− β2
β1+β2

2
− β2

≥ π

√
η(1− η) + β1+β2

2
− η

β1+β2
2

− η

queries to RΠ and Rψ, we obtain the correct answer with probability at least 8
π2 . In the

inequalities above we use similar reasoning about monotonicity in [0, β2] similar to the com-

pleteness case.

We will simply take the larger of these two lower bounds such that both conditions

are met. Since RΠ and Rψ use a constant number of calls to U and U †, the total number

of calls is O(

√
γ+max{β1(1−β1),β2(1−β2}

γ
). Hoeffding’s inequality (Fact 2.1) can be used to bring

the success probability from 3/4 to 1 − δ using 6 ln(1/δ) repetitions. The runtime includes

an extra factor of O(n), due to the linear cost of both preparing Wx and the Bell difference

sampling projector, giving a O

(
n log(1/δ)

√
γ+max{β1(1−β1),β2(1−β2}

γ

)
time complexity.

Using our knowledge of how stabilizer fidelity can be used to bound η, we then recover

the following quadratic speedup in terms of γ.

Corollary 5.14. For γ > 0 such that γ = α6
1 − 3α2+1

4
, let |ψ⟩ be an unknown n-qubit pure

state prepared by a unitary U . There exists a quantum algorithm that distinguishes whether

|ψ⟩ is a state with stabilizer fidelity at least α1 or a state with fidelity less than α2, promised

that one of these is The case. The algorithm uses O (log(1/δ)/γ) applications of either U

or U † and time O (n log(1/δ)/γ), and distinguishes the two cases with success probability at

least 1− δ.

Proof. By Proposition 5.3 we can set β1 = α6
1, and by Proposition 5.4 we can set β2 =

3α2+1
4

.

Finally, we note that for all x ∈ [0, 1], x(1 − x) ≤ 1
4
, giving us the desired bounds when

applying Lemma 5.13.
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5.5.2 Multiplicative Distance

Let us now imagine that β1 and β2 are multiplicatively related in our η distinguishing

problem. With just black-box access to the state, Lemma 5.5, one would expect a scaling of

O(1/β2
1) sample complexity. We show how to use a state preparation unitary to achieve a

quartic speedup of O(1/
√
β1) as compared to black-box access to quantum states. The first

quadratic speedup simply comes from näıve application of Quantum Amplitude Estimation

like with Corollary 5.14. The second speedup comes from the realization that the outcomes

of the random variables are now {0, 1} rather than {±1}. In the right regimes this causes

the variance of η̂ to decrease significantly, allowing for faster estimation.

Corollary 5.15. Let µ < 1 be an arbitrary positive constant bounded away from 1 (i.e.,

1
2
, 2
3
, 99
100

, etc.) and let |ψ⟩ be an unknown n-qubit pure state prepared by a unitary U . There

exists a quantum algorithm that distinguishes whether |ψ⟩ is a state with η at least β or

a state with η less than µβ, promised that one of these is the case. The algorithm uses

O
(
log(1/δ)/

√
β
)
applications of either U or U † and time O

(
n log(1/δ)/

√
β
)
, and distin-

guishes the two cases with success probability at least 1− δ.

Proof. If we apply Lemma 5.13 with α1 = β and α2 = µα, we note that γ = 1−µ
2
β = Θ(β).

Using the fact that β ≥ β(1− β) for β ∈ [0, 1], we get the desired bounds.

5.6 Discussion and Open Problems

Can tighter bounds between η and stabilizer fidelity be proven? In Section 5.4,

we proved that one can hope for at most a roughly quadratic improvement in the bound

FS(|ψ⟩)6 ≤ η. Progress in this direction would extend the parameter regimes for which

our property testing algorithm works (see Fig. 5.1). Likewise, can the soundness case be

86



improved? It seems that either a better understanding of higher moments of pψ or an

entirely new proof technique would be required.

In addition to η, are there other statistics related to stabilizer fidelity (or any other

stabilizer complexity measure) that can be estimated efficiently? We note that, assuming

the existence of quantum-secure one way functions, the results of [ABF+22] show that no

statistics can differentiate states with fidelity inverse super-polynomial from states with

extremely inverse exponential fidelity (specifically Haar random states). See Chapter 8 for

details.
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Chapter 6

Stabilizer State Approximations

This chapter is based on Section 5 of [GIKL23b], which was joint work with Sabee

Grewal, Vishnu Iyer, and William Kretschmer. Some of the preliminary results were moved

to Chapters 2 to 4.

We give an algorithm for estimating stabilizer fidelity (Definition 2.35). Recall that it

is simply the maximum of |⟨ϕ|ψ⟩|2 over all stabilizer states |ϕ⟩. Assuming |ψ⟩ has stabilizer

fidelity at least τ , our algorithm returns a succinct description of a stabilizer state (i.e.,

generators of its stabilizer group) that witnesses overlap at least τ − ε with |ψ⟩.

Theorem 6.1 (Informal version of Theorem 6.9). Let |ψ⟩ be an n-qubit pure state and fix

τ > ε > 0. If the stabilizer fidelity of |ψ⟩ is at least τ , there is an algorithm that returns a

stabilizer state |ϕ⟩ that satisfies |⟨ϕ|ψ⟩|2 ≥ τ − ε. The algorithm uses O(n/(ε2τ 4)) copies of

|ψ⟩ and exp (O(n/τ 4)) /ε2 time.

To our knowledge, this is the first nontrivial algorithm to approximate an arbitrary

quantum state with a stabilizer state. Indeed, we are not aware of any prior algorithm

better than a brute-force search over all stabilizer states, which takes 2O(n2) time and O(n2)

samples.1 Thus our algorithm offers a substantial improvement in the regime of τ = ω(n−1/4).

Arguably, the most interesting setting of parameters is constant τ , in which case we have a

quadratic improvement in sample complexity and a superpolynomial improvement in time

complexity.

1The polynomial sample complexity follows from a straightforward application of the classical shadows
framework [HKP20]. See [Gro06, Corollary 21] for a proof that there are 2O(n2) many stabilizer states.
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Observe that, because we output a witness of stabilizer fidelity at least τ − ε with

high probability, assuming a state with fidelity τ exists, our algorithm can be used as a

subroutine to estimate stabilizer fidelity and, moreover, find a stabilizer state that witnesses

this. More precisely, if the goal is to estimate stabilizer fidelity to accuracy ±ε, then one

can break [0, 1] into intervals of width ε and perform a binary search procedure using our

algorithm. Overall, this takes O(n/ε6) samples and exp(O(n/ε4)) time.

As an application, our stabilizer fidelity estimation algorithm could be used to search

for better stabilizer decompositions of magic states. Recall that magic states are states

that, when injected into Clifford circuits, allow for the simulation of universal quantum

computation [BK05]. The best-known algorithms for simulating quantum circuits dominated

by Clifford gates use decompositions of magic states into linear combinations of stabilizer

states, and have a runtime that scales polynomially in the complexity of the decomposition

[BBC+19]. Hence, better stabilizer decompositions of magic states yield faster algorithms.

These decompositions are often obtained by writing the tensor product of a small number of

magic states (usually on the order of 10 qubits) as a slightly larger number of stabilizer states

[BSS16, Koc22]. Therefore, if our algorithm could be made practical for (say) n ≈ 15 qubits,

there is reason to believe that running our algorithm on magic states, combined with a meta-

algorithm such as matching pursuit [MZ94], could find better stabilizer decompositions of

magic states and, as a result, improve the runtime of near-Clifford simulation.

Finally, we remark that the problem we solve is similar in spirit to the agnostic prob-

ably approximately correct (PAC) learning framework [Val84, KSS92]. In the agnostic PAC

model, a learner is given labeled training data {(x1, y1), . . . , (xm, ym)} from some unknown

distribution D, as well as some concept class C to choose a hypothesis from. The goal of the

learner is to find a hypothesis function h ∈ C that approximates the best fit for the training

data, even though no function in C will necessarily fit the training data perfectly. In an

analogous fashion, our algorithm finds a stabilizer state |ϕ⟩ that approximates the best fit
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for |ψ⟩ over the set of stabilizer states, which need not contain |ψ⟩. We note that Aaronson

studied PAC learning of quantum states in the so-called realizable setting [Aar07]. However,

agnostic PAC learning of quantum states has not yet appeared in the literature.

Our presentation is split into two parts. First, in Section 6.1, we prove a useful

lemma regarding qψ on S∗ = Weyl(|ϕ⟩), where |ϕ⟩ is the stabilizer state that maximizes

stabilizer fidelity with |ψ⟩. At a high level, we argue that any sample from qψ has a good

enough chance of “making progress” towards learning a complete set of generators for S∗.

Formally, we prove that the qψ-mass on S∗ is not heavily concentrated on proper subspaces

of S∗, so that when we sample an element of S∗, we obtain an element of S∗ that is linearly

independent of the previous samples with a reasonable probability. Second, in Section 6.2,

we state our algorithm, prove its correctness, and analyze its sample and time complexities.

6.1 Stabilizer Fidelity Implies Anticoncentration of qψ

We show a series of anticoncentration2 results (for both pψ and qψ) on proper sub-

spaces of S∗. Just as with Section 4.4, for these next lemmas we will find it more convenient

to assume without loss of generality (because of Lemmas 4.9 and 4.10) that the state maxi-

mizing fidelity is |0n⟩, which conceptually simplifies the computations.

We start by showing that the cψ values (see Definition 2.16) are anticoncentrated.

Lemma 6.2. Let |ψ⟩ be an n-qubit state. Suppose the fidelity |⟨ψ|ϕ⟩|2 is maximized by

|ϕ⟩ = |0n⟩ over stabilizer states |ϕ⟩. Let S∗ = 0n×Fn2 = Weyl(|0n⟩), and let T = 0n+1×Fn−1
2

be a maximal subspace of S∗. Then

∑
x∈S∗\T

cψ(x) ≥ 2
n
2
−1
(√

3− 1
)
FS(|ψ⟩).

2We remark that Section 4.4.3 is focused on concentration instead.
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Figure 6.1: An illustration of the argument in the proof of Lemma 6.2. Consider the (possibly
unnormalized) state α0 |0n⟩ + α1 |10n−1⟩. We can visualize the first qubit of this state on
the Bloch sphere. The surface enclosed by the red and blue curve is exactly the set of
points on the sphere for which |0⟩ is the closest stabilizer state. By our assumption that the
stabilizer fidelity of |ψ⟩ is maximized by |0n⟩, α0 |0⟩ + α1 |1⟩ must lie on this surface, up to
normalization. The corners of this surface (the intersection of a blue curve with a red curve)
represent a choice of α0 and α1 that minimizes α0.

Proof. We can express the sum as

∑
x∈S∗\T

cψ(x) =
1√
2n

∑
x∈1×Fn−1

2

Tr [|ψ⟩⟨ψ|W0n,x]

= 2
n
2
−1Tr

[
|ψ⟩⟨ψ|

(
Z ⊗ |0⟩⟨0|n−1)]

= 2
n
2
−1
(
|α0|2 − |α1|2

)
,

where α0 is the amplitude of |ψ⟩ on |0n⟩ and α1 is its amplitude on |10n−1⟩. Note that

|α0|2 = FS(|ψ⟩), by assumption. Thus, we need to show that |α1| cannot be too big compared

to |α0|, or else it would contradict the maximality of |⟨ψ|ϕ⟩|2 at |ϕ⟩ = |0n⟩. We give a visual

proof of this fact in Figure 6.1, along with an algebraic proof below.

Choose the global phase on |ψ⟩ to assume without loss of generality that α0 is positive-
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real and α1 = |α1|eiθ. We may write:

|
(
⟨+| ⊗ ⟨0n−1|

)
|ψ⟩|2 = 1

2
|α0 + α1|2 =

1

2

(
(α0 + |α1| cos θ)2 + |α1|2 sin2 θ

)
|
(
⟨−| ⊗ ⟨0n−1|

)
|ψ⟩|2 = 1

2
|α0 − α1|2 =

1

2

(
(α0 − |α1| cos θ)2 + |α1|2 sin2 θ

)
|
(
⟨i| ⊗ ⟨0n−1|

)
|ψ⟩|2 = 1

2
|α0 + iα1|2 =

1

2

(
(α0 − |α1| sin θ)2 + |α1|2 cos2 θ

)
|
(
⟨−i| ⊗ ⟨0n−1|

)
|ψ⟩|2 = 1

2
|α0 − iα1|2 =

1

2

(
(α0 + |α1| sin θ)2 + |α1|2 cos2 θ

)
.

All of these values need to be less than |α0|2, as otherwise |ψ⟩ would have larger fidelity

with one of the above states. Due to symmetry of both sin and cos, we will only consider

θ ∈ [0, π
2
] such that the only relevant equations to consider are the first and last. This allows

us to write the largest of the above inner products as

1

2

(
α2
0 + |α1|2 + 2α0|α1| ·max (cos θ, sin θ)

)
,

which is minimized for θ = π/4. Plugging that back in and comparing to α2
0 leads to

α2
0 ≥

1

2

(
α2
0 + |α1|2 +

√
2α0|α1|

)
,

and solving for the maximum |α1| gives |α1| ≤
(
2−

√
3
)1/2 |α0|. Hence, |α0|2 − |α1|2 ≥

1− (2−
√
3)α2

0 =
(√

3− 1
)
FS(|ψ⟩). Therefore,∑

x∈S∗\T

cψ(x) = 2
n
2
−1
(
|α0|2 − |α1|2

)
≥ 2

n
2
−1
(√

3− 1
)
FS(|ψ⟩).

We can now use Cauchy-Schwarz to show that pψ must naturally also be anticoncen-

trated.

Lemma 6.3. Let |ψ⟩ be an n-qubit state. Suppose the fidelity |⟨ψ|ϕ⟩|2 is maximized by

|ϕ⟩ = |0n⟩ over stabilizer states |ϕ⟩. Let S∗ = 0n×Fn2 = Weyl(|0n⟩), and let T = 0n+1×Fn−1
2

be a maximal subspace. Then ∑
x∈S∗\T

pψ(x) ≥
(
2−

√
3
)
FS(|ψ⟩)2.
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Proof.

∑
x∈S∗\T

pψ(x) ≥
1

2n−1

 ∑
x∈S∗\T

|cψ(x)|

2

(Cauchy-Schwarz)

≥ 1

2n−1

 ∑
x∈S∗\T

cψ(x)

2

(Triangle Inequality)

≥ 1

2n−1

(
2
n
2
−1
(√

3− 1
)
FS(|ψ⟩)

)2
(Lemma 6.2)

=
(
2−

√
3
)
FS(|ψ⟩)2.

Due to the structure of the convolution, we now combine both concentration and

anticoncentration of pψ to give anticoncentration of qψ.

Lemma 6.4. Let |ψ⟩ be an n-qubit state. Suppose the fidelity |⟨ψ|ϕ⟩|2 is maximized by

|ϕ⟩ = |0n⟩ over stabilizer states |ϕ⟩. Let S∗ = 0n×Fn2 = Weyl(|0n⟩), and let T = 0n+1×Fn−1
2

be a maximal subspace. Then ∑
x∈S∗\T

qψ(x) ≥
2−

√
3

2
FS(|ψ⟩)4.

Proof. We can write∑
x∈S∗\T

qψ(x) =
∑

x∈S∗\T

∑
t∈F2n

2

pψ(t)pψ(x+ t)

≥
∑
t∈T

pψ(t)
∑

x∈S∗\T

pψ(x+ t)

=

(∑
t∈T

pψ(t)

) ∑
x′∈S∗\T

pψ(x
′)

 (t+ S∗ \ T = S∗ \ T )

Now apply Corollary 4.14 and Lemma 6.3 respectively and we get∑
x∈S∗\T

qψ(x) ≥
|T |
2n
FS(|ψ⟩)2 ·

(
2−

√
3
)
FS(|ψ⟩)2 =

2−
√
3

2
FS(|ψ⟩)4

as desired.
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Finally, we use Lemmas 4.9 and 4.10 once again to generalize the result for arbitrary

maximizing stabilizer states.

Lemma 6.5. Given an n-qubit state |ψ⟩, let |ϕ⟩ be a stabilizer state that maximizes the

stabilizer fidelity, and let S∗ = Weyl(|ϕ⟩). Let T ⊂ S∗ be a proper subspace of S∗. Then

∑
x∈S∗\T

qψ(x) ≥
2−

√
3

2
FS(|ψ⟩)4.

Proof. Use Lemma 4.9 to choose a Clifford circuit such that C |ϕ⟩ = |0n⟩, C(S∗) = 0n × Fn2 ,

and C(T ) ⊆ 0n+1 × Fn−1
2 . Let |ψ′⟩ = C |ψ⟩. Then by Lemma 4.10:

∑
x∈S∗\T

qψ(x) =
∑

x∈C(S∗\T )

qψ′(x) ≥
∑

x∈0n×1×Fn−1
2

qψ′(x).

By Lemma 6.4, this sum is lower bounded by

∑
x∈0n×1×Fn−1

2

qψ′(x) ≥ 2−
√
3

2
FS(|ψ′⟩)4 = 2−

√
3

2
FS(|ψ⟩)4.

6.2 The Algorithm

Our algorithm for estimating stabilizer fidelity uses the powerful classical shadows

framework [HKP20] to improve its sample complexity.

Theorem 6.6 (Classical shadows algorithm [HKP20]). Let ρ be an unknown n-qubit mixed

state. Then there exists a quantum algorithm that first performs mshadow = O(log(K/δ)/ε2)

random Clifford measurements on independent copies of ρ. Then, later given K different

observables O1, O2, . . . , OK in an online fashion, where each Oi is a rank-1 projector, the

algorithm uses the measurement results to output estimates ô1, . . . , ôK, such that with proba-

bility at least 1− δ, for every i ∈ [K], |ôi−Tr(Oiρ)| ≤ ε. Moreover, if Oi is a projector onto

a stabilizer state, then each ôi can be computed from the measurement results by a classical

algorithm that takes time O(n2mshadow).
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For the “moreover” part of Theorem 6.6, see the remarks on Page 1053 of [HKP20].

We also require an algorithm, due to [TTT06], for computing all of the maximal

cliques in a graph.

Theorem 6.7 (Computing maximal cliques [TTT06]). Given an undirected graph G with n

vertices, there is a classical algorithm that outputs a list of all of the maximal cliques in G

in time O(3n/3).

Note that this implies that the number of maximal cliques is at most O(3n/3).

We are now ready to describe the fidelity estimation algorithm. At a high level, it

uses Bell difference sampling to obtain a list of candidate Lagrangian subspaces generated

by the sampled Weyl operators. Then, it iterates through the candidate groups to find the

stabilizer state with largest fidelity, using classical shadows to perform the estimation.

We first argue that with high probability, one of the maximal cliques generates the

Lagrangian subspace corresponding to a state that maximizes stabilizer fidelity.

Lemma 6.8. Given an n-qubit state |ψ⟩, let |ϕ⟩ be a stabilizer state that maximizes the

stabilizer fidelity, and let S∗ = Weyl(|ϕ⟩). Suppose |⟨ϕ|ψ⟩|2 ≥ τ . Then choosing mclique ≥
8+4

√
3

τ4
(n + log(1/δ)) is sufficient to guarantee that with probability at least 1 − δ, the Bell

difference sampling step of algorithm Algorithm 3 samples a complete set of generators for

S∗.

Proof. By Lemmas 3.10 and 6.5 with c = 2−
√
3

2
τ 4, we only need 8+4

√
3

τ4
(n+log 1

δ
) Bell difference

samples to find generators of S∗ with probability at least 1− δ.

Now we have everything needed to prove the correctness of Algorithm 3.

Theorem 6.9. Let |ψ⟩ be an n-qubit state with FS(|ψ⟩) ≥ τ . Then choosing

mclique =
8 + 4

√
3

τ 4
(n+ log(2/δ)) mshadow = O

(
n+ log(1/δ)

ε2τ 4

)
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Algorithm 3: Estimating Stabilizer Fidelity

Input: mshadow + 4mclique copies of |ψ⟩
Promise: |ψ⟩ has stabilizer fidelity at least τ
Output: A stabilizer state |ϕ⟩ such that |⟨ϕ|ψ⟩|2 ≥ τ − ε with probability at

least 1− δ
1 Initialize an empty graph G
2 repeat mclique times
3 Using 4 copies of |ψ⟩, perform Bell difference sampling to obtain x ∈ F2n

2

4 Add a vertex for x in G and connect it to all vertices y in G such that
[x, y] = 0.

5 repeat mshadow times
6 Choose a random Clifford circuit U
7 Measure U |ψ⟩ in the computational basis and store the result

8 foreach maximal clique (v1, . . . , vk) ∈ G computed using Theorem 6.7 do
9 Compute S := ⟨v1, . . . , vk⟩ via Gaussian elimination

10 if |S| = 2n then
11 foreach stabilizer state |ϕ⟩ with Weyl(|ϕ⟩) = S do
12 Let ôϕ be the estimator of |⟨ψ|ϕ⟩|2 computed using the algorithm in

Theorem 6.6

13 return whichever |ϕ⟩ maximizes ôϕ
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suffices to guarantee that with probability at least 1 − δ, Algorithm 3 outputs a state |ϕ⟩

satisfying |⟨ϕ|ψ⟩|2 ≥ τ − ε.

Proof. Choose the failure probability in Lemma 6.8 to be at most δ/2. Choose the pa-

rameters in Theorem 6.6 so that the additive error in the estimates is ε/2 and the fail-

ure probability is at most δ/2; this requires choosing K = 2n · O
(
3mclique/3

)
and thus

mshadow = O(log(K/δ)/ε2) = O((n+mclique + log(1/δ))/ε2) = O(mclique/ε
2).

We assume henceforth that both Theorem 6.6 and Lemma 6.8 do not fail, which

happens with probability at least 1− δ over the samples.

Letting |φ⟩ be the state maximizing stabilizer fidelity and S∗ = Weyl(|φ⟩), Lemma 6.8

guarantees that the algorithm samples a complete set of generators for S∗. These generators

are necessarily contained in some maximal clique of G because they all commute, and more-

over, the subspace spanned by this clique must equal S∗ because S∗ equals its symplectic

complement (so the maximal clique cannot contain any elements not in S∗).

By Theorem 6.6, the estimate ôφ is at least τ − ε/2, so maxϕ ôϕ ≥ τ − ε/2. Thus, the

state |ϕ⟩ that maximizes the estimate ôϕ (and is output by the algorithm) has |⟨ϕ|ψ⟩|2 ≥

ôϕ − ε/2 ≥ ôφ − ε/2 ≥ τ − ε.

Finally, we briefly comment on the runtime of Algorithm 3. The runtime is dominated

by iterating through all of the maximal cliques, iterating through all of the stabilizer states |ϕ⟩

such that Weyl(|ϕ⟩) = S, and computing ôϕ. There are at most O
(
3mclique/3

)
maximal cliques,

by Theorem 6.7. There are exactly 2n stabilizer states in each basis. Finally, Theorem 6.6

guarantees that computing each ôϕ from the classical shadows takes time O(n2mshadow). Thus

the overall time complexity is at most

O
(
3mclique/3 · 2n · n2mshadow

)
.
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Plugging in the bounds on mclique and mshadow gives

exp

(
O

(
n+ log(1/δ)

τ 4

))
· n

3 + n2 log(1/δ)

ε2τ 4
,

which further simplifies to

exp

(
O

(
n+ log(1/δ)

τ 4

))
· 1

ε2

by absorbing the rightmost term into the big-O in the exponent.

6.3 Discussion and Open Problems

A natural direction for future work is to improve the performance of our algorithms

or to prove (conditional or unconditional) lower bounds. In particular, can the exponential

running time of Algorithm 3 be improved upon, or is stabilizer fidelity estimation computa-

tionally hard? We are optimistic that the exponential factors in our runtime analysis could

be made much smaller in practice, because our bound on the sample complexity of finding

a complete set of generators is probably far from optimal.

We also remark that, at least superficially, our problem of finding the nearest stabilizer

state resembles the closest vector problem (CVP): given a lattice L and a target vector, find

the nearest lattice point to the target vector. In our problem, we are given a target vector,

and we want to find the nearest stabilizer state to the target vector. While not a lattice,

the stabilizer states are “evenly spread” across the complex unit sphere due to their 3-design

property [KG15, Web16]. CVP is known to be NP-hard to solve approximately to within any

constant and some almost-polynomial factors [vEB81, ABSS97, DKS98]. Is there a formal

connection between these two problems?

One can view the output of Algorithm 3 as an approximation of the input state

by a nearby stabilizer state. Following this theme, a natural objective is to design simi-

lar approximation algorithms relative to other classes of quantum states such as product
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states or matchgate states. We note that it is even open to design a time-efficient algo-

rithm that, given copies of an n-qubit quantum state, outputs the nearest state from the

set {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |i⟩ , |−i⟩}⊗n, which is a subset of stabilizer states. In addition to po-

tentially improving Clifford+T simulation algorithms, are there other applications for these

types of state approximation algorithms? As mentioned previously, something like matching

pursuit [MZ94] could potentially lead to better magic state decompositions. In addition, are

there other applications for these types of state approximation algorithms?
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Chapter 7

Efficient Learning of Quantum States Prepared With

Few Non-Clifford Gates

This chapter is based on [GIKL23a]. It was joint work with Sabee Grewal, Vishnu

Iyer, and William Krestchmer. Some of the preliminary results were moved to Chapters 2

to 4.

7.1 Introduction

Quantum state tomography is the task of constructing a classical description of a

quantum state, given copies of the state. This task—whose study dates back to the 1950s

[Fan57]—is fundamentally important in quantum theory, and finds applications in the verifi-

cation of quantum technologies and in experiments throughout physics, among other things.

For a thorough history and motivation, we refer the reader to [DPS03, BCG13].

The optimal number of copies to perform quantum state tomography on a d-

dimensional quantum mixed state is Θ(d2) using entangled measurements [OW16, HHJ+17]

and Θ(d3) using single-copy measurements [KRT17, HHJ+17, CHL+22]. For a quantum pure

state, Θ(d) copies are necessary and sufficient [BM99]. Alas, since the dimension d grows

exponentially with the system size, the number of copies consumed by state tomography

algorithms quickly becomes impractical, and, indeed, learning systems of even 10 qubits can

require millions of measurements [SXL+17].

There have been several approaches to circumvent the exponential scaling of quantum

state tomography, which we discuss further in Section 7.1.2. For example, one can try to
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recover less information about the state, or make additional assumptions about the state.

While these results have drastically improved copy complexities relative to general quantum

state tomography, many of them remain computationally inefficient.

In this chapter, we present a pure state tomography algorithm whose copy and time

complexities scale in the complexity of a circuit that prepares the state. More specifically, we

assume that the circuit is described by a gate set consisting of Clifford gates (i.e., Hadamard,

phase, and CNOT gates) as well as single-qubit non-Clifford gates. We re-iterate that such

gate sets are well-studied in quantum information because they are universal for quantum

computation [Shi03], and have a number of desirable properties for quantum error correc-

tion and fault tolerance [Kni04, BK05, BBB+23], classical simulation of quantum circuits

[BBC+19], and efficient implementation of approximate t-designs [HMMH+20].

Our main result is a tomography algorithm that scales polynomially in the number

of qubits and exponentially in the number of non-Clifford gates needed to prepare the state.

Theorem 7.1 (Informal version of Theorem 7.14). Let |ψ⟩ be an n-qubit quantum state

that can be prepared by Clifford gates and t single-qubit non-Clifford gates. There exists an

algorithm that uses poly(n, 2t, 1/ε) time and copies of |ψ⟩, and outputs a classical description

of |ψ⟩ that is ε-close in trace distance to |ψ⟩ with high probability.

Hence, our algorithm learns in polynomial time any quantum state that can be pre-

pared by Clifford gates and O(log(n)) single-qubit non-Clifford gates. Although our algo-

rithm is no longer efficient when t exceeds ω(log(n)), it still remains more efficient than

standard pure state tomography as long as t is asymptotically smaller than n.

7.1.1 Main Ideas

Our algorithm in fact learns a more general class of states, namely: quantum states

with stabilizer dimension at least n − t (Definition 2.37). Informally, a quantum state has
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stabilizer dimension n − t if it is stabilized by an abelian group of 2n−t Pauli operators.

(Recall that an operator U stabilizes a quantum state |ψ⟩ when U |ψ⟩ = |ψ⟩.) Quantum

states prepared by Clifford gates and t/2 non-Clifford gates fall into this class because they

have stabilizer dimension at least n− t (Lemma 7.3).

Our first observation is that learning |ψ⟩ reduces to learning Weyl(|ψ⟩) (Defini-

tion 2.22). In particular, we show in Lemma 7.6 that given a set of generators for Weyl(|ψ⟩),

we can efficiently construct a Clifford circuit C such that C |ψ⟩ = |φ⟩ |x⟩, where |x⟩ is a

computational basis state on n − t qubits and |φ⟩ is a general state on t qubits. This con-

struction builds on standard techniques for manipulating stabilizer tableaux, which appeared

e.g., in the Aaronson-Gottesman algorithm [AG04]. In some sense, this step “compresses”

the non-Cliffordness of the state into the first t qubits.1 Once we know C, we can easily

learn |x⟩ by measuring C |ψ⟩, and can learn |φ⟩ using a tomography algorithm on t qubits,

which takes 2O(t) time [BM99].

To learn Weyl(|ψ⟩), we again utilize Bell difference sampling. A key property of Bell

difference sampling that we showed in Chapter 3 is that the support is always constrained to

Weyl(|ψ⟩)⊥ (Corollary 4.5). This suggests a natural approach to try to compute Weyl(|ψ⟩):

Bell difference sample repeatedly, and then take our estimate ̂Weyl(|ψ⟩) to be the symplectic

complement of the sampled Pauli operators.

A priori, it is not at all clear why this strategy could work, because in general

̂Weyl(|ψ⟩) may be much larger than Weyl(|ψ⟩). A key technical step in our proof amounts

to showing that, after poly(n, 1/ε) Bell difference samples, with high probability, |ψ⟩ must

be ε-close to a state whose unsigned stabilizer group is ̂Weyl(|ψ⟩). In other words, if after

sufficiently many samples ̂Weyl(|ψ⟩) is larger than G, then this witnesses that |ψ⟩ is close

to a state with stabilizer dimension n− t̂ for some t̂ < t. So, we can use the aforementioned

1Similar techniques of compressing non-Cliffordness have appeared in [ABNOGm22, LOLH22].
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stabilizer tableau algorithm (Lemma 7.6) on ̂Weyl(|ψ⟩) to find a Clifford circuit C such that

C |ψ⟩ ≈ |φ⟩ |x⟩, where |φ⟩ has t̂ < t qubits.

As a byproduct of this step in our proof, we obtain an algorithm for property testing

stabilizer dimension, which may be of independent interest.

Theorem 7.2 (Informal version of Theorem 7.10). Let k ≥ 1, let |ψ⟩ be an n-qubit quantum

state, and suppose that either (1) |ψ⟩ has stabilizer dimension at least k, or (2) |ψ⟩ has

fidelity at most 1− ε with all such states. There is an algorithm that distinguishes these two

cases using O (n/ε) copies of |ψ⟩ and O (n3/ε) time.

Notably, this property testing algorithm is efficient for all choices of the stabilizer

dimension k, unlike our learning algorithm. Much like Theorem 5.6, Theorem 7.2 can also be

used to show that certain states are not computationally pseudorandom (using the definition

of [JLS18]). In particular, that Haar-random states are efficiently distinguishable from states

with nonzero stabilizer dimension (see Section 8.3 for the details and proof).

To recap, the steps in our learning algorithm are as follows: (1) Bell difference sample

repeatedly, (2) compute the symplectic complement ̂Weyl(|ψ⟩) of the sampled Pauli opera-

tors, (3) use ̂Weyl(|ψ⟩) to find a Clifford circuit C such that C |ψ⟩ ≈ |φ⟩ |x⟩, and (4) learn

|φ⟩ |x⟩. While some aspects of the analysis are technical, the algorithm itself is quite simple

and could be amenable to implementation on near-term devices. Indeed, the only quantum

parts of the algorithm involve measuring pairs of qubits, applying Clifford circuits, measuring

in the computational basis, and performing tomography on a t-qubit state. So, for example,

the resource requirements of our algorithm are quite comparable to those of the classical

shadows protocol [HKP20].
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7.1.2 Related Work

There is a long line of work devoted to developing near-Clifford simulation algorithms

[AG04, BG16, RLCK19, BBC+19, QPG21], which classically simulate quantum circuits dom-

inated by Clifford gates. These algorithms scale polynomially in the number of qubits and

Clifford gates and exponentially in the number of non-Clifford gates. The main contribution

of this work is to complement these classical simulation algorithms with a learning algorithm

that scales comparably with respect to the number of non-Clifford gates.

There are a few other classes of quantum states for which time-efficient tomography

algorithms are known. Among these are stabilizer states [Mon17], non-interacting fermion

sates [AG23], matrix product states [CPF+10], and certain classes of phase states [ABDY22].

As a result of our work, the class of quantum states prepared by Clifford gates and O(log(n))

non-Clifford gates joins this list. We note that our result strictly generalizes Montanaro’s

algorithm for learning stabilizer states (see Algorithm 1).

Lai and Cheng [LC22] gave an algorithm that learns a quantum state that is prepared

via Clifford gates and a few T -gates, where the T -gate is the non-Clifford unitary T =

|0⟩⟨0| + eiπ/4 |1⟩⟨1|. However, their algorithm only works if the circuit U that prepares the

input state meets two conditions. Firstly, U must be written as C1T
vC2, where C1 and

C2 are Clifford circuits, and T v = T v1 ⊗ · · · ⊗ T vn for a string v ∈ Fn2 of Hamming weight

O(log(n)) (i.e., there is a single layer of O(log(n)) T -gates between two Clifford circuits).

Secondly, the X-matrix of the stabilizer tableau of C1 |0n⟩ must be full rank, but only when

restricted to the qubits that the T -gates act on. Suffice it to say, their algorithm works in a

highly restricted setting. In contrast, our algorithm works for any quantum state prepared

using Clifford gates and O(log(n)) arbitrary non-Clifford gates (not just the T -gate), and

with the non-Clifford gates allowed to be placed anywhere in the circuit. Our work therefore

applies to a substantially larger set of states than Lai and Cheng’s algorithm.
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Besides Lai and Cheng [LC22], other authors have explored the complexity of some

related learning problems that involve Clifford+T circuits. For example, [HIN+22] observes

that, given samples from the measurement distribution of a circuit comprised of Clifford

gates and a single T -gate, learning this distribution can be as hard as the learning parities

with noise (LPN) problem. Leone, Oliviero, Lloyd, and Hamma [LOLH22] give algorithms

for learning the dynamics of a quantum circuit U comprised of Clifford gates and few T -

gates, given oracle access to U . Both of these results are incomparable to our algorithm,

because the inputs and outputs of the respective learning tasks are different from ours.

In another direction, one can reduce the computational complexity of learning by only

estimating certain properties of quantum states, instead of producing an entire description

of the state. For example, consider the shadow tomography problem [Aar19, AR19, BO21]

where, given a list of known two-outcome observables and copies of an unknown quan-

tum state, the goal is to estimate the expectation value of each observable with respect to

the unknown state. Aaronson [Aar19] showed that shadow tomography requires a number

of copies that scales polylogarithmically in both the number of two-outcome observables

and the Hilbert space dimension, but the algorithm is not computationally efficient. More

recently, Huang, Kueng, and Preskill [HKP20] introduced classical shadows, a shadow to-

mography algorithm that could be amenable to near-term quantum devices. Just like prior

work, classical shadows uses exponentially fewer copies of the input state relative to state

tomography, but, in general, is not computationally efficient.2

7.2 Stabilizer Dimension of t-doped Clifford Circuits

To set the stage, we first show that the output state |ψ⟩ of a t-doped Clifford circuit,

where t < n/2, induces a distribution qψ that is supported over a subspace of dimension

2There are certain settings where classical shadows is computationally efficient; see [HKP20] for more
detail.
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at most 2n − 2. This means that we will be dealing with states with nonzero stabilizer

dimension. This also serves to motivate the importance of states with nonzero stabilizer

dimension, as they are a superset of the states produced by t-doped Clifford circuits for

small t.

Lemma 7.3. Let |ψ⟩ be the output state of a t-doped Clifford circuit. Then the stabilizer

dimension of |ψ⟩ is at least n− 2t.

Proof. We proceed by induction on t. In the base case t = 0, so |ψ⟩ is a stabilizer state and

has stabilizer dimension n.

For the inductive step, let t > 0. Write |ψ⟩ = CU |φ⟩, where |φ⟩ is the output of a

(t − 1)-doped Clifford circuit, U is a single-qubit gate, and C is a Clifford circuit. Because

the stabilizer dimension is unchanged by Clifford gates, it suffices to show that the stabilizer

dimension of U |φ⟩ is at least n− 2t.

Let S = Weyl(|φ⟩), which by the induction assumption has dimension at least n −

2(t− 1). Observe that for any x ∈ S, if the Weyl operator Wx commutes with U , then:

⟨φ|U †WxU |φ⟩ = ⟨φ|Wx|φ⟩ = ±1.

Hence, letting T := {x ∈ S : UWxU
† = Wx}, we see that the stabilizer dimension of U |φ⟩

is at least the dimension of T . But |T | ≥ |S|/4, because T contains all elements x of S for

which Wx restricts to the identity on the qubit to which U is applied. Thus, the stabilizer

dimension of U |φ⟩ is at least n− 2t, as desired.

We remark that the stabilizer dimension lower bound in Lemma 7.3 can be improved

to n− t in the case that all of the non-Clifford gates are diagonal (for example, if all of the

non-Clifford gates are T -gates). This is because diagonal gates commute with both I and Z.

As a consequence of Lemma 7.3, we can use Corollary 4.5 to show that the support

of qψ must lie in some proper subspace if t is small enough.
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Corollary 7.4. Let |ψ⟩ be the output state of a t-doped Clifford circuit. Then the support

of qψ is a subspace of dimension at most n+ 2t.

Proof. By Lemma 7.3, the dimension of Weyl(|ψ⟩) is at least n− 2t, implying the dimension

of Weyl(|ψ⟩)⊥ is at most n+ 2t. The result follows from Corollary 4.5, which says that the

support of qψ must lie in Weyl(|ψ⟩)⊥.

7.3 Linear Algebra Subroutines

Our tomography algorithm uses two linear algebraic subroutines, which we describe

below. First, we give an algorithm for computing the symplectic complement of a subspace.

Lemma 7.5. Given a set of m vectors whose span is a subspace H ⊆ F2n
2 , there is an

algorithm that outputs a basis for H⊥ in O(mn ·min(m,n)) time.

Proof. The algorithm works as follows. First, construct a m × 2n matrix whose rows are

the m elements of H given as input. Then swap the left and right m× n block submatrices,

and denote the resulting matrix by M . Observe that for a nonzero vector v, Mv = 0 only

when the symplectic product between v and all vectors in H is 0. Hence, v is in H⊥, and

the nullspace of M is precisely H⊥. Finding a basis for the nullspace of M can be done via

Gaussian elimination, which takes O(mn ·min(m,n)) time.

Next, we explain how to find a Clifford circuit whose action on F2n
2 maps an arbitrary

d-dimensional isotropic subspace of F2n
2 to the subspace 02n−d × Fd2. We note that while the

existence of such a Clifford circuit is not difficult to show (cf. Lemma 4.9), an explicit and

efficient construction requires a bit more effort.

Lemma 7.6. Given a set of m vectors whose span is a d-dimensional isotropic subspace

H ⊂ F2n
2 , there exists an efficient algorithm that outputs a Clifford circuit C such that
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C(H) = 02n−d × Fd2. The algorithm runs in O(mn ·min(m,n)) time, and the circuit size of

C (i.e., the number of gates) is O(nd).

Proof. We will explain the algorithm and then prove its correctness. To begin, run Gaussian

elimination on the set of m vectors to get a basis for H such that, when written as a d× 2n

matrix M = (mi,j), the matrix M is in row echelon form. This process takes O(m2n) time.

The subspace spanned by the rows of M is precisely the subspace H.

The matrix M is essentially a stabilizer tableau, and therefore Clifford gates have the

following effect on M (for additional detail see, e.g., [AG04]):

• Applying the Hadamard gate on the ith qubit corresponds to swapping the ith and

(n+ i)th columns of M .

• Applying the phase gate on the ith qubit corresponds to adding the ith column of M

to the (n+ i)th column of M .

• Applying the CNOT gate with control qubit i and target qubit j corresponds to adding

the ith column of M to the jth column M and adding the (n + j)th column of M to

the (n+ i)th column of M .

Additionally, row operations do not change the subspace spanned by the rows of M and

therefore can be done freely.

Our job now is to find a sequence of Hadamard, phase, and CNOT gates that maps

M to a matrix whose rows span the subspace 02n−d × Fd2; in particular, a matrix with the

following form

(
0 0 I

)
, (7.1)

where the first 0 is a d×n matrix of all 0’s, the second is a d× (n− d) matrix of all 0’s, and

the last is a d× d identity matrix.
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The remainder of the algorithm works as follows.

1. For each row i ∈ [d] of M :

(a) For each j ∈ {i, . . . , n}, apply phase and Hadamard gates so that either mi,j = 1

and mi,n+j = 0 or both are 0.

(b) If mi,i = 0, then find a k ∈ {i + 1, . . . , n} for which mi,k = 1.3 Apply a CNOT

with control qubit i and target qubit k so that mi,i = 1.

(c) For each j ∈ {i + 1, . . . , n}, if mi,j = 1, apply CNOT with control qubit i and

target qubit j.

(d) For j ∈ {i+ 1, . . . , d}, set mj,i = 0.4

2. Apply a Hadamard gate to each of the first d qubits.

3. For i ∈ {0, . . . , d− 1}, apply a CNOT with control qubit n− i and target qubit d− i.

Then apply a CNOT with control qubit d− i and target qubit n− i.

Let C denote the Clifford circuit described by the above process. The algorithm

concludes by outputting C. We apply O(n) Clifford gates and do at most O(d) row-sum

operations per row. Thus, looping over the matrix M takes O(nd) time, and therefore the

overall running time is O(mn · min(m,n)), due to the Gaussian elimination step at the

beginning of the algorithm. The size of the circuit is at most O(nd).

To prove correctness, we must argue that C(H) = 02n−d × Fd2, or equivalently, that

the algorithm above maps M to a matrix as in Eq. (7.1).

3At least one such k must exist, for if it didn’t, then the ith row would be all 0’s, which is impossible
since the rows of M are linearly independent.

4This corresponds to adding the ith row to the jth row, which, as mentioned earlier, does not change the
subspace spanned by the rows of M .

109



First, we show that Step 1 of the algorithm maps M to a matrix of the form

(
I 0 0

)
,

where I is the d × d identity matrix. It is clear that after the first iteration of Step 1

completes, m1,1 = 1 and the remaining entries of the first row and column are 0’s. By way

of induction, assume that this is true after the first i − 1 iterations, so that the resulting

matrix looks as follows:



1 0 0 0 0

1 0 0 0 0
0 0 mi,i 0 0

0 0 0 0



n columns︷ ︸︸ ︷

︸ ︷︷ ︸
i− 1 columns

︸ ︷︷ ︸
i− 1 columns

. (7.2)

In the top row, from left to right, the first block is the (i− 1)× (i− 1) identity matrix, then

an (i − 1) × (n − i + 1) block of all 0’s, and finally an (i − 1) × 2n block of all 0’s. In the

bottom row, from left to right, the first block is a (d− i+1)× (i− 1) matrix of all 0’s, then

a (d− i+1)× (n− i+1) block being processed by the algorithm, then a (d− i+1)× (i− 1)

block of all 0’s, and finally a (d− i+1)× (n− i+1) block being processed by the algorithm.

We will argue that after the ith iteration of Step 1 finishes, the matrix will have the

form of Eq. (7.2) but with mi,i = 1 and the rest of the ith row and ith column cleared to 0.

First, observe that the third block in the second row must be all 0’s if the first block of the
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top row is the identity matrix because the subspace spanned by the rows is isotropic (and

applying Clifford gates will not affect that by their preservation of commutation relations

among Paulis). It is also clear that the operations performed in the ith iteration will set

mi,i = 1, setmi,j = 0 for j ∈ {i+1, . . . , 2n}, and setmj,i = 0 for j ∈ {i+1, . . . , d}. Therefore,

we just need to argue that the ith iteration does not reintroduce 1’s into the blocks of 0’s or

affect the (i − 1) × (i − 1) identity matrix in the first block of the first row. Observe that

neither of these can happen as long as Hadamard gates and CNOT gates are not applied to

the first i− 1 qubits in the ith iteration. Indeed, our algorithm does not apply any gates to

the first i − 1 qubits, so the structure of matrix in Eq. (7.2) is preserved. Therefore, once

Step 1 terminates, the resulting matrix will by a d× d identity matrix in the first block and

the remaining entries of the matrix will be 0’s.

The layer of Hadamard gates in Step 2 maps the d × d identity matrix to the right

block of the matrix, i.e., (
0 I 0

)
.

Finally, the CNOT gates in Step 3 move the identity matrix to the rightmost-side of the

tableau, matching the goal shown in Eq. (7.1). This can be verified by explicit calculation.

We note that the CNOT gates move the identity matrix by starting with the rightmost

column and then proceeding leftward, which is critical for correctness when d > n/2. Hence,

C performs the desired mapping.

7.4 On Subspaces with Large qψ-mass

We prove two lemmas that form the starting point for our property testing and

tomography algorithms. First, we show that, by Bell difference sampling a sufficient number

of times, one can efficiently learn a coisotropic subspace H⊥ that accounts for a large fraction

of the qψ-mass (and therefore, the pψ-mass, by Corollary 4.3). The coisotropic property will

naturally follow from Lemmas 4.7 and 4.8 if the fraction of the probability mass is large
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enough. We will use the symplectic complement H of H⊥ as a sort of proxy for Weyl(|ψ⟩)

(Definition 2.22), i.e., the set of Weyl operators that stabilizer |ψ⟩ up to sign.

Second, we show that, if an (n + t)-dimensional (coisotropic) subspace H⊥ does ac-

count for a large fraction of the pψ-mass, then the state |ψ⟩ is close in fidelity to a state of

the form C |φ⟩ |x⟩, where C is a Clifford circuit determined by H, |x⟩ is an (n − t)-qubit

basis state, and |φ⟩ is a t-qubit state. Furthermore, we explain how to use Lemma 7.6 to

efficiently construct the Clifford circuit C given H.

7.4.1 Sampling Lemma

We begin by showing that Bell difference sampling allows one to approximate the

support of qψ. The proof is similar in nature to that of Lemma 3.10.

Lemma 7.7. Let |ψ⟩ be an n-qubit quantum pure state, and let H⊥ denote the subspace of

F2n
2 spanned by m samples drawn from qψ. Then, for ε, δ ∈ (0, 1),

∑
x∈H⊥

qψ(x) ≥ 1− ε

with probability at least 1− δ as long as

m ≥
2 log 1

δ
+ 4n

ε
.

Proof. For samples x1, . . . , xm ∈ F2n
2 drawn from qψ, let H

⊥
i = ⟨x1, . . . , xi⟩ be the subspace

spanned by the first i samples for arbitrary 0 ≤ i ≤ m. Define the indicator random variable

Xi as

Xi =

{
1 if xi ∈ F2n

2 \H⊥
i−1 or

∑
x∈H⊥

i−1
qψ(x) ≥ 1− ε.

0 otherwise.

Intuitively, Xi = 1 indicates that either the sample xi has increased the span of H⊥
i

(i.e., H⊥
i−1 ⊂ H⊥

i ) or that H⊥
i−1 already accounts for a (1 − ε)-fraction of the mass of qψ.

If H⊥
i−1 does account for a (1 − ε)-fraction of the mass of qψ, then Xi = 1 with probability
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1. If not, then the probability mass on F2n
2 \H⊥

i−1 is at least ε, and therefore, Xi = 1 with

probability at least ε. In both cases, Pr[Xi = 1] ≥ ε, and therefore µ := E[
∑

iXi] ≥ mε.5

Once
∑m

i=1Xi ≥ 2n, the subspace H⊥
m must account for a (1− ε)-fraction of the mass

of qψ. This is because the dimension of F2n
2 is 2n and so the span can only expand 2n times.

Set γ := 1− 2n
µ
. By a Chernoff bound (Fact 2.2),

Pr

[
m∑
i=1

Xi ≤ 2n

]
= Pr

[
m∑
i=1

Xi ≤ (1− γ)µ

]
≤ exp

(
−µ
2
γ2
)

= exp

(
−µ
2
− 2n2

µ
+ 2n

)
≤ exp

(
−mε

2
+ 2n

)
.

Hence, as long as

m ≥
2 log 1

δ
+ 4n

ε
,

H⊥
m will account for a (1− ε)-fraction of the qψ-mass with probability at least 1− δ.

7.4.2 Product State Structure

We prove a critical relation between the pψ-mass on isotropic subspaces and stabilizer

dimension by generalizing Proposition 4.16. In particular, we show that if an (n − t)-

dimensional isotropic subspace has large pψ-mass, then there is a Clifford circuit C (that

can be constructed efficiently) that maps |ψ⟩ to a product state |φ⟩ |x⟩, where |x⟩ is an

(n− t)-qubit basis state and |φ⟩ is an arbitrary t-qubit state.

Just like Proposition 4.16, it will be easier to assume that the isotropic subspace is a

subset of {I, Z}⊗n. We now state our main lemma in that context.

5Actually, this bound on Pr[Xi = 1] is loose until dimH⊥
i exceeds n, because subspaces of dimension

less than n cannot account for more than half of the qψ mass. Accounting for this should yield a constant
factor improvement in the sample complexity.
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Lemma 7.8. Let T = 0n+t × Fn−t2 , and suppose that

∑
x∈T

pψ(x) ≥
1− ε

2t
.

Then there exists an (n− t)-qubit computational basis state |x⟩ and a t-qubit quantum state

|φ⟩ := (I ⊗ ⟨x|) |ψ⟩
∥(I ⊗ ⟨x|) |ψ⟩∥2

, 6

such that the fidelity between |φ⟩ |x⟩ and |ψ⟩ is at least 1− ε.

Proof. We can always write |ψ⟩ =
∑

x∈Fn−t2
αx |φx⟩ |x⟩ where

∑
x∈Fn−t2

|αx|2 = 1. If we can

show that

max
x∈Fn−t2

|⟨ψ| (|φx⟩ |x⟩)|2 ≥ 1− ε,

then we are done, by taking |φ⟩ = |φx⟩. First,

max
x∈Fn−t2

|⟨ψ| (|φx⟩ |x⟩)|2 = max
x∈Fn−t2

|αx|2

= max
x∈Fn−t2

|αx|2 ·
∑

x∈Fn−t2

|αx|2

≥
∑

x∈Fn−t2

|αx|4.

Observe that
∑

x|αx|4 is precisely the collision probability when measuring the last

n− t qubits of |ψ⟩ in the computational basis. Hence, by Lemma 4.17,

∑
x∈Fn−t2

|αx|4 = 2t
∑
x∈T

pψ(x) ≥ 1− ε.

Finally, we generalize the previous lemma using the Clifford mapping algorithm from

Lemma 7.6.

6This is to say that |φ⟩ is obtained by postselecting on measuring the last n− t qubits of |ψ⟩ to be |x⟩.
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Corollary 7.9. Let T be an isotropic subspace of dimension n− t, and suppose that

∑
x∈T

pψ(x) ≥
1− ε

2t
.

Then there exists a state |ψ̂⟩ with T ⊆ Weyl(|ψ̂⟩) such that the fidelity between |ψ̂⟩ and |ψ⟩

is at least 1− ε.

In particular, |ψ̂⟩ = C† |φ⟩ |x⟩, where |x⟩ is an (n− t)-qubit basis state,

|φ⟩ := (I ⊗ ⟨x|)C |ψ⟩
∥(I ⊗ ⟨x|)C |ψ⟩∥2

is a t-qubit quantum state, and C is a Clifford circuit that can be constructed efficiently.

Proof. Let C be the Clifford circuit mapping T to 0n+t × Fn−t2 described in Lemma 7.6.

Define |ϕ⟩ := C |ψ⟩. Then, by Lemma 4.10,

∑
x∈T

pψ(x) =
∑

x∈C(T )

pϕ(x) ≥
1− ε

2t
.

Therefore, by Lemma 7.8, C |ψ⟩ is (1− ε)-close in fidelity to a state |φ⟩ |x⟩, where |x⟩ is an

(n− t)-qubit basis state and

|φ⟩ := (I ⊗ ⟨x|)C |ψ⟩
∥(I ⊗ ⟨x|)C |ψ⟩∥2

is a t-qubit quantum pure state. Since fidelity is unitarily invariant, the fidelity between |ψ⟩

and |ψ̂⟩ = C† |φ⟩ |x⟩ is also at least 1− ε. Clearly, C(T ) ⊆ Weyl(|φ⟩ |x⟩), and therefore, by

Lemma 4.10, T ⊆ Weyl(|ψ̂⟩).

7.5 Property Testing Stabilizer Dimension

As a first application, we present an efficient algorithm for property testing stabilizer

dimension. Recall that a property tester for a classQ of quantum states takes copies of a state

|ψ⟩ as input and determines whether |ψ⟩ ∈ Q or |ψ⟩ is ε-far from all such states (according to

some measure of distance), promised that one of these is the case. Our algorithm efficiently
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Algorithm 4: Property Testing Stabilizer Dimension

Input: 8 log(1/δ)+16n
ε

copies of |ψ⟩, k ∈ [n], ε ∈ (0, 3/8), and δ ∈ (0, 1]
Promise: |ψ⟩ has stabilizer dimension at least k or is ε-far in fidelity from all

such states
Output: 1 if |ψ⟩ has stabilizer dimension at least k, 0 otherwise, with

probability at least 1− δ
1 Perform Bell difference sampling to draw 2 log(1/δ)+4n

ε
samples from qψ.

2 Denote the span of the samples by H⊥. Let k̂ = dimH = 2n− dimH⊥.

3 Return 1 if k̂ ≥ k and 0 otherwise.

tests whether an input state has stabilizer dimension at least k or has fidelity less than 1− ε

with all such states.

Theorem 7.10. Let |ψ⟩ be an n-qubit quantum state. Algorithm 4 determines whether

|ψ⟩ has stabilizer dimension at least k or has fidelity at most 1 − ε with all such states,

promised that one of these is the case. The algorithm uses 16n+8 log(1/δ)
ε

copies of |ψ⟩ and

O
(
n3+n2 log(1/δ)

ε

)
time, and succeeds with probability at least 1− δ.

Proof. First, suppose that |ψ⟩ has stabilizer dimension at least k. By Lemma 4.4, qψ is

supported on a subspace of dimension at most 2n − k. So, no matter what, dimH⊥ will

never exceed 2n− k, and therefore k̂ will always be at least k. Hence, Algorithm 4 accepts

with probability 1.

Now suppose that |ψ⟩ has fidelity less than 1 − ε with every state of stabilizer di-

mension at least k. By Corollary 4.3 and Lemma 7.7, with probability at least 1 − δ, the

subspace H satisfies ∑
x∈H⊥

pψ(x) ≥
∑
x∈H⊥

qψ(x) ≥ 1− ε.

Assuming this occurs, applying Theorem 4.1 gives

∑
x∈H

pψ(x) =
|H|
2n

∑
x∈H⊥

pψ(x) ≥
1− ε

2n−k̂
.
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Since
∑

x∈H⊥ qψ(x) ≥ 1− ε > 5/8 , H is isotropic by Lemma 4.8. As such, by Corollary 7.9,

there exists a state of stabilizer dimension at least k̂ that has fidelity at least 1− ε with |ψ⟩.

By assumption, we must have k̂ < k, and thus Algorithm 4 rejects with probability at least

1− δ.

Overall, we find that in either case, with probability at least 1 − δ, the algorithm

succeeds. It remains to bound the runtime. Computing dimH⊥ first requires computing a

basis for H⊥, and, to do so, we have to run Gaussian elimination. This takes O(mn2) time,

where m = O
(
n+log(1/δ)

ε

)
is the number of Bell difference samples taken by the algorithm,

and dominates the running time.

7.6 Tomography of High-Stabilizer-Dimension States

We present our tomography algorithm that learns a classical description of a quantum

state, promised that the state has stabilizer dimension at least n−t. As corollaries, we explain

how our algorithm learns the outputs of t-doped Clifford circuits and that our algorithm is

efficient (both in copy and time complexity) when t = O(log(n)).

Our tomography algorithm builds on the property testing algorithm presented in

Section 7.5. That is, we begin by taking enough Bell difference samples to find a coisotropic

subspace that accounts for a large fraction of the qψ-mass. After that, we use Corollary 7.9

to show that there is a Clifford circuit C such that C |ψ⟩ is close to a state of the form |φ⟩ |x⟩

(and we use Lemma 7.6 to construct the Clifford circuit efficiently). From there, one can

easily learn the basis state |x⟩. Finally, we run a pure state tomography algorithm to learn

the arbitrary state |φ⟩.

Definition 7.11 (Pure state tomography copy and time complexities). Let Nn,ε,δ and Mn,ε,δ

denote the copy and time complexities, respectively, of a pure state tomography algorithm to

learn a classical description of an n-qubit state to trace distance at most ε with probability

at least 1− δ.
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We will state our copy and time complexities in terms of Nn,ε,δ and Mn,ε,δ, but, for

concreteness, we mention two pure state tomography algorithms. The first is the state-of-

the-art when it comes to scaling in the dimension d = 2n of the system (though, it does not

match the best-known lower bound of Ω(d)). The second scales poorly in the dimension, but

achieves the optimal dependence on ε and δ.

Theorem 7.12 ([FBaK21]). Given access to copies of an n-qubit pure state |ψ⟩, there is

an algorithm that uses O (2nn log(1/δ)ε−4) copies, O (4nn3 log(1/δ)ε−5) time, and outputs a

state |ψ̂⟩ that is ε-close to |ψ⟩ in trace distance with probability at least 1− δ. The algorithm

only requires applying random Clifford circuits and classical post-processing.

Theorem 7.13 ([AG23, Section 5]). Given access to copies of an n-qubit pure state |ψ⟩,

there is an algorithm that uses O (16n log(1/δ)ε−2) copies, O (32n log(1/δ)ε−2) time, and

outputs a state |ψ̂⟩ that is ε-close to |ψ⟩ in trace distance with probability at least 1− δ. The

algorithm only requires applying Clifford circuits and classical post-processing.

We are now ready to state our algorithm.

Algorithm 5: Tomography of High-Stabilizer-Dimension States

Input: O
(
n+log(1/δ)

ε2
+Nt, ε

2
, δ
3

)
copies of |ψ⟩ and ε, δ ∈ (0, 1]

Promise: |ψ⟩ has stabilizer dimension at least n− t

Output: |ψ̂⟩ such that TD(|ψ⟩ , |ψ̂⟩) ≤ ε with probability at least 1− δ

1 Perform Bell difference sampling to draw 8 log(3/δ)+16n
ε2

samples from qψ.
2 Use the algorithm in Lemma 7.5 to compute the symplectic complement of the

subspace spanned by the samples. Denote this subspace by H and set
t̂ = n− dimH.

3 Use the algorithm in Lemma 7.6 to construct a Clifford circuit C that maps H

to 0n+t̂ × Fn−t̂2 .
4 Measure the last n− t̂ qubits of 2Nt̂, ε

2
, δ
3
+ 24 log(3/δ) copies of C |ψ⟩. Let

x̂ ∈ Fn−t̂2 be the majority result. Reserve the first t̂ qubits of the states for
which x̂ is observed, and, otherwise, discard the qubits.

5 Run a pure state tomography algorithm on the t̂-qubit states reserved in the
prior step to learn a classical description of the state to trace distance ε/2 with
probability at least 1− δ/3. Let |φ̂⟩ be the output.

6 Return |ψ̂⟩ = C† |φ̂⟩ |x̂⟩.
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Theorem 7.14. Let |ψ⟩ be an n-qubit quantum state with stabilizer dimension at least n− t.

Given copies of |ψ⟩ as input, Algorithm 5 outputs a classical description of a state |ψ̂⟩ such

that TD(|ψ⟩ , |ψ̂⟩) ≤ ε with probability at least 1− δ. The algorithm uses

O

(
n+ log(1/δ)

ε2
+Nt, ε

2
, δ
3

)
copies of |ψ⟩ and

O

(
n3 + n2 log(1/δ)

ε2
+Mt, ε

2
, δ
3

)
time.

Proof. By Lemma 7.7, except with probability at most δ/3, the Bell difference sampling

phase of the algorithm in Line 1 finds a subspace H⊥ ⊆ F2n
2 such that∑

x∈H⊥

qψ(x) ≥ 1− ε2

4
≥ 3

4
.

Assuming this occurs, by Lemma 4.8, H⊥ is coisotropic. From Corollary 4.3, we know that∑
x∈H⊥

pψ(x) ≥ 1− ε2

4
.

In the next step, the algorithm computes H, and we denote t̂ = n − dimH. Using Theo-

rem 4.1, we have that ∑
x∈H

pψ(x) =
|H|
2n

∑
x∈H⊥

pψ(x) ≥
1− ε2/4

2t̂
.

The algorithm then produces a Clifford circuit C according to Lemma 7.6 such that C maps

H to 0n+t̂×Fn−t̂2 . By Corollary 7.9, there exists an (n− t̂)-qubit basis state |x⟩ and a t̂-qubit

state

|φ⟩ := (I ⊗ ⟨x|)C |ψ⟩
∥(I ⊗ ⟨x|)C |ψ⟩∥2

,

such that the fidelity between C |ψ⟩ and |φ⟩ |x⟩ is at least 1− ε2/4, implying that

TD(|ψ⟩ , C† |φ⟩ |x⟩) ≤ ε

2
. (7.3)
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Note that the definition of |φ⟩ means that |φ⟩ is the state on t̂ qubits conditioned on

measuring |x⟩ on the last n− t̂ qubits of C |ψ⟩. We use this property in Line 4 of Algorithm 5,

whose purpose is two-fold. We determine the (n−t̂)-qubit basis state |x⟩ by taking a majority

vote over measurement outcomes, and also reserve copies of |φ⟩ to pass to the pure state

tomography algorithm in the proceeding step. Suppose we have m copies of the state C |ψ⟩,

and let x1, . . . , xm denote the (n− t̂)-bit measurement outcome upon measuring the last n− t̂

qubits in the computational basis. Define the indicator random variable Xi as

Xi =

{
1 if xi = x.

0 otherwise.

Because the fidelity between C |ψ⟩ and |φ⟩ |x⟩ is at least 1 − ε2/4 and ε ∈ (0, 1], Pr[Xi =

1] ≥ 0.75 and µ := E[
∑

iXi] ≥ 0.75m. By a Chernoff bound (Fact 2.2),

Pr

[
m∑
i=1

Xi ≤
m

2

]
≤ Pr

[
m∑
i=1

Xi ≤
(
1− 1

3

)
µ

]
≤ exp

(
− µ

18

)
≤ exp

(
−m

24

)
.

Hence, as long as,

m ≥ 24 log(1/δ),

over half of the m samples will be x with probability at least 1 − δ. In our case, taking

m to be 2Nt̂, ε
2
, δ
3
+ 24 log(3/δ) suffices for the majority result x̂ to equal x, and for Nt̂, ε

2
, δ
3

copies of the t̂-qubit state |φ⟩ to be reserved for the pure state tomography algorithm in

the proceeding step of the algorithm, except with probability at most δ/3. Assuming this

occurs, with probability at least 1− δ/3 the tomography algorithm in Line 5 returns a state

|φ̂⟩ that is within trace distance at most ε/2 from |φ⟩.

120



In the final step of the algorithm, we return C† |φ̂⟩ |x̂⟩. Then we have

dTr(|ψ⟩ , C† |φ̂⟩ |x̂⟩) ≤ dTr(|ψ⟩ , C† |φ⟩ |x⟩) + dTr(|φ⟩ |x⟩ , |φ̂⟩ |x̂⟩)

≤ ε

2
+ dTr(|φ⟩ |x⟩ , |φ̂⟩ |x̂⟩)

≤ ε.

The first step follows by the triangle inequality and the fact that trace distance is unitarily

invariant. The second step follows from Eq. (7.3). The final step follows assuming x̂ = x

and dTr (|φ⟩ , |φ̂⟩) ≤ ε/2.

By applying a union bound over the “bad” events (namely, Lines 1, 4 and 5 of the

algorithm), we have that the overall success probability of the algorithm is at least 1− δ.

To conclude, we bound the copy and time complexities of the algorithm. By

Lemma 4.4, the support of qψ is a subspace of dimension at most n+ t, so dimH⊥ ≤ n+ t

and therefore t̂ ≤ t. Thus, the tomography subroutine in Line 5 uses O
(
Nt, ε

2
, δ
3
+ log(1/δ)

)
copies, and Line 1 uses O ((log(1/δ) + n)/ε2) copies. Hence, in total, the algorithm uses

O

(
n+ log(1/δ)

ε2
+Nt, ε

2
, δ
3

)
copies of the input state. As for time complexity, Lines 2 and 5 dominate the running time.

The overall time complexity is therefore

O

(
n3 + n2 log(1/δ)

ε2
+Mt, ε

2
, δ
3

)
.

The dependence on t comes entirely from a pure state tomography algorithm (e.g.,

Theorem 7.12 or Theorem 7.13) in Line 5 of Algorithm 5. Hence, one can upgrade this part of

the algorithm with improved pure state tomography algorithms when/if they are discovered.

Additionally, one can interpret our result as a reduction to pure state tomography on t-

qubits, where the reduction uses O((n + log(1/δ))/ε2) copies and O((n3 + n2 log(1/δ))/ε2)

time.
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We remark that Lines 1 and 2 are generalizations of [Mon17] (see Theorem 3.13).

Notably, since Weyl(|ϕ⟩) is Lagrangian in the case that |ϕ⟩ is a stabilizer state, the symplectic

complement did not need to be computed in that Weyl(|ϕ⟩)⊥ = Weyl(|p⟩hi).

By Lemma 7.3, t-doped Clifford circuits have stabilizer dimension at least n − 2t,

which yields the following corollary.

Corollary 7.15. Let |ψ⟩ be an n-qubit quantum state prepared by a t-doped Clifford circuit.

Then O
(
n+log(1/δ)

ε2
+N2t, ε

3
, δ
3

)
copies of |ψ⟩ and O

(
n3+n2 log(1/δ)

ε2
+M2t, ε

2
, δ
3

)
time suffice for

Algorithm 5 to output a classical description |ψ̂⟩ that is within trace distance ε of |ψ⟩ with

probability at least 1− δ.

Finally, by taking t = O(log(n)), our algorithm is efficient in both copy and time

complexity.

Corollary 7.16. Let |ψ⟩ be an n-qubit quantum state prepared by a O(log(n))-doped Clifford

circuit. Then poly(n, log(1/δ), 1/ε) copies of |ψ⟩ and time suffice for Algorithm 5 to output

a classical description |ψ̂⟩ that is within trace distance ε of |ψ⟩ with probability at least 1− δ.

7.7 Open Problems

Our tomography algorithm efficiently learns a classical description of a quantum state

|ψ⟩ that can be prepared with Clifford gates and O(log(n)) non-Clifford gates. However, our

algorithm is not a proper learner—in other words, the circuit that the algorithm outputs to

approximate the state does not necessarily decompose into few non-Clifford gates.

Question 7.17. Given an n-qubit state |ψ⟩ that is the output of an O(log n)-doped Clifford

circuit, is it possible to construct an O(log n)-doped Clifford circuit C such that C |0n⟩ is

ε-close to |ψ⟩?
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We note that an efficient algorithm for stabilizer states is known (namely, just run

Algorithm 5 with t = 0). We also note that this task becomes trivial if polynomially many

non-Clifford gates are allowed in C because one can use Algorithm 5 to produce C, |x⟩, and

|φ⟩, and then construct a circuit with at most 2O(logn) = poly(n) general gates that outputs

|φ⟩ [SBM06].

As a subroutine, Algorithm 5 uses pure state tomography to recover a classical de-

scription of a pure state, and therefore the copy and time complexities of our algorithm can

be improved if faster pure state tomography algorithms are developed. Developing a pure

state tomography algorithm that achieves the optimal O(2n/ε2) copy and time complexities

is an interesting and important direction for future work.

Finally, is there an efficient algorithm for learning states with large stabilizer dimen-

sion that uses only single-copy measurements? Bell difference sampling, which involves two

consecutive two-copy measurements of the unknown state, is the only part of our algorithm

that uses multiple copies of the state at a time. We remark that Aaronson and Gottesman

[AG08] (see also [Aar22, Section 23.3]) gave an algorithm for learning stabilizer states from

single-copy measurements.
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Chapter 8

Pseudorandom Quantum States and Stabilizer

Complexity

This chapter is based on [GIKL23c] and Section 4 of [GIKL23b], which were joint

work with Sabee Grewal, Vishnu Iyer, and William Kretschmer. The lower bound based on

stabilizer extent/fidelity is due to [GIKL23c]. The improved lower bound based on stabilizer

dimension is due to [GIKL23b]. Some of the preliminary results are contained in Chapters 2

to 5 and 7.

This chapter concerns pseudorandom quantum states, first defined by Ji, Liu, and

Song [JLS18], which are quantum states that appear indistinguishable from Haar-random

states to computationally bounded adversaries. That is, an ensemble of n-qubit states is

defined to be pseudorandom if no poly(n)-time quantum algorithm can distinguish copies of

a state drawn from the ensemble from copies of a Haar-random state, except with advantage

negligible in n.

As a quantum analogue of cryptographic pseudorandom generators, pseudorandom

states have recently attracted much attention in quantum cryptography and complexity

theory. They suffice to build a wide range of cryptographic primitives, including quan-

tum commitments, secure multiparty communication, one-time digital signatures, and more

[JLS18, AQY22, MY22b, BCQ23, MY22a, HMY22]. The language of pseudorandom states

has also been found to play a key role in resolving some paradoxes at the heart of black hole

physics [BFV20, Bra22]. Finally, and perhaps most surprisingly, there is recent evidence

to suggest that pseudorandom states can be constructed without assuming the existence of
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one-way functions [Kre21, KQST22].

Collectively, these results have motivated recent works that seek to characterize what

computational properties or resources are required of pseudorandom states. For example,

[ABF+22] investigates the possibility of building pseudorandom quantum states with limited

entanglement, and prove the existence of pseudorandom state ensembles with entanglement

entropy substantially smaller than n, assuming the existence of quantum-secure one-way

functions.

It is a well known fact that cryptography and learning are natural counterparts to

one another. Hardness for learning is often derived from assumed cryptographically hard

problems. In turn, an object that is easy to learn, in the computational sense, is not suitable

for cryptographic purposes. As such, learning algorithms give natural lower-bounds on the

kinds of resources needed to construct cryptographic objects. In this chapter in particular,

we study quantum pseudorandom states from the perspective of stabilizer complexity and

consider the number of non-Clifford gates in a circuit as a resource, similar to size or depth.

This will be done entirely using the existing algorithms of Algorithms 2 and 4.

Theorem 8.1 (Informal version of Theorem 8.12). Let |ψ⟩ be an unknown n-qubit pure state.

There is an efficient algorithm that distinguishes whether |ψ⟩ is Haar-random or a state with

stabilizer fidelity at least τ , promised that one of these is the case. In particular, the algorithm

uses O(τ−12 log 1
δ
) copies of |ψ⟩ and O(nτ−12 log 1

δ
) time to succeed with probability at least

1− δ.

The key idea is that the statistic measured in Algorithm 2 is related to how concen-

trated the pψ(x) are and for a Haar random state the pψ(x) should not be concentrated at

all with overwhelming probability over the Haar measure.

Theorem 8.1 also generalizes to distinguishing states with low stabilizer extent from

Haar-random. To the best of our knowledge, prior to our work, it was even unknown whether
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states of stabilizer extent at most a constant could be efficiently distinguished from Haar-

random. We also emphasize that the contrast between our positive learning result and

the hardness result of [HIN+22] stems in part from the differing access models: we assume

access to copies of the quantum state, whereas [HIN+22] considers algorithms that only have

outcomes of standard basis measurements of the state.

As a simple corollary, we prove a ω(log n) lower bound on the number of T -gates

required to prepare computationally pseudorandom quantum states by showing that the

stabilizer extent decreases by at most a constant multiplicative factor for each T gate.

Corollary 8.2 (Corollary 8.14). Any family of Clifford+T circuits that produces an ensemble

of n-qubit computationally pseudorandom quantum states must use at least ω(log n) T -gates.

We then give an exponential improvement on this lower bound based on stabilizer

dimension (Definition 2.37). We start with the following result based on Algorithm 4.

Theorem 8.3 (Informal version of Theorem 8.17). Let |ψ⟩ be an unknown n-qubit pure state.

There is an efficient algorithm that distinguishes whether |ψ⟩ is Haar-random or a state with

stabilizer dimension at least 1, promised that one of these is the case. In particular, the

algorithm uses O(n+log 1
δ
) copies of |ψ⟩ and O(n3+n2 log 1

δ
) time to succeed with probability

at least 1− δ.

We then observe that the stabilizer dimension is at least n − 2t for t single-qubit

non-Clifford gates. In turn, a Haar random state has not only stabilizer dimension zero with

high probability, it is also very far from any state with non-zero stabilizer dimension with

high probability.

Corollary 8.4 (Informal version of Corollary 8.18). Any family of Clifford circuits that

produces an ensemble of n-qubit computationally pseudorandom quantum states must use at

least n/2 auxiliary non-Clifford single-qubit gates.
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In the special case that the non-Clifford gates are all diagonal (e.g., T -gates), our

lower bound improves to n.

Under plausible computational assumptions, Corollary 8.4 is tight up to constant

factors. In particular, the existence of linear-time quantum-secure pseudorandom functions

(which are believed to exist [IKOS08, FLY22, GIKL23c]) implies the existence of linear-time

constructible pseudorandom states [BS19, GIKL23c], which of course have at most O(n) non-

Clifford gates. The key idea is that Haar-random states have minimal stabilizer dimension

(Definition 2.37) with overwhelming probability, whereas each single-qubit non-Clifford gate

decreases the stabilizer dimension by at most 2.

Under slightly weaker computational assumptions, Theorem 8.1 is also tight, in terms

of stabilizer fidelity rather than T gate count. Assuming the existence of quantum-secure one

way functions (that need not be linear-time constructible) [ABF+22] show how to construct

pseudorandom quantum states with arbitrary inverse super-polynomial stabilizer fidelity.

8.1 Stabilizer Extent of t-doped Clifford Circuits

To prove lower bounds, via stabilizer fidelity, on the number of T -gates necessary

to prepare pseudorandom quantum states, we need to lower bound the stabilizer fidelity of

a quantum state prepared by some number of non-Clifford gates. This will be analogous

to Section 7.2, where the stabilizer dimension was also lower bounded in the number of

non-Clifford gates.

Recall that a t-doped circuit is a quantum circuit comprised only of Clifford gates

(i.e., Hadamard, Phase, and CNOT) and at most t single-qubit non-Clifford gates. We will

will now upper bound the stabilizer extent, which immediately give lower bounds on stabilizer

fidelity as well by Claim 2.36.
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Claim 8.5. For |ψ⟩ = α |v⟩+ β |w⟩,

ξ(|ψ⟩) ≤
(
|α|
√
ξ(|v⟩) + |β|

√
ξ(|w⟩)

)2
.

Proof. Let |v⟩ =
∑

i ci |ϕi⟩ and |w⟩ =
∑

j dj |φj⟩ be the minimal decompositions in terms of

stabilizer extent (i.e., (
∑

i|ci|)
2 = ξ(|v⟩)). Since |ψ⟩ = α |v⟩+β |w⟩ = α

∑
i c |ϕi⟩+β

∑
j d |φj⟩,

we have a stabilizer decomposition of |ψ⟩. The stabilizer extent of this decomposition is at

most (∑
i

|αci + βdi|

)2

≤

(
|α|
∑
i

|ci|+ |β|
∑
i

|di|

)2

=
(
|α|
√
ξ(v) + |β|

√
ξ(w)

)2
.

We now prove our stabilizer extent upper bound based on how non-Clifford the circuit

is. Note that we give bounds specifically in terms of the T gate, but that the result can be

generalized to all t-doped circuits by adjusting the parameters of the decomposition in the

proof of Lemma 8.6.

Lemma 8.6. Let C be a t-doped Clifford circuit such that all of the non-Clifford gates are

the T gate. Let |ψ⟩ = C |0n⟩. Then,

ξ(|ψ⟩) ≤
(
1 +

1√
2

)t
.

Proof. We observe that a t-doped Clifford circuit can be broken into layers of Clifford circuits,

followed by a single non-Clifford gate, followed by more layers of Clifford circuits, and so

on. Since Clifford circuits preserve stabilizer extent, we only need to show that the T -gate

increases the stabilizer extent of any state by at most a constant multiplicative factor. Since

the SWAP gate is a Clifford operation, we assume without loss of generality that each T -gate

is applied to the first qubit.

We proceed by induction on the layers of the circuit. In the first layer, when no T -gates

have been applied, the bound is trivially true because the stabilizer extent of any stabilizer

state is 1. Now, assume that, after applying some portion of the circuit C ′ to |0n⟩ with t− 1
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T -gates, we get the state |φ⟩. Observe that the T -gate can be expressed as cos(π/8)eiπ/8I +

sin(π/8)ei13π/8Z. Thus, (T ⊗I⊗n−1) |φ⟩ = cos(π/8)eiπ/8 |φ⟩+sin(π/8)ei13π/8 (Z ⊗ I⊗n−1) |φ⟩.

Since Z⊗I⊗n−1 is a Clifford operation, (Z ⊗ I⊗n−1) |φ⟩ has the same extent as |φ⟩. Therefore,

applying Claim 8.5,

ξ(|ψ⟩) ≤ (cos(π/8) + sin(π/8))2 ξ(|φ⟩) ≤
(
1 +

1√
2

)t
.

We remark that due to Fact 5.9, this exponential scaling in t is tight, though the

actual base of the exponent is likely very loose.

8.1.1 Bell difference sampling for Haar-Random States

Haar-random states, due to behaving like gaussian random vectors, concentrate ex-

tremely well. This makes the Bell difference sampling distribution very nice with high

probability over the Haar measure. We formalize this idea by showing that all of the pψ(x)

for x ̸= 0 cannot be to big with overwhelmingly high probability.

We first require the following lemma, which shows that the Weyl measurements are

concentrated around 0. The building block is a concentration inequality known as Lévy’s

Lemma.

Lemma 8.7 (Lévy’s Lemma, see e.g., [Ger13]). Let SN denote the set of all N-dimensional

pure quantum states, and let f : SN → R be L-Lipschitz, meaning that |f(|ψ⟩) − f(|φ⟩)| ≤

L · ∥|ψ⟩ − |φ⟩∥2. Then:

Pr
|ψ⟩∼µHaar

[|f(|ψ⟩)− E[f ]| ≥ ε] ≤ 2 exp

(
− Nε2

9π3L2

)
.

Lemma 8.8. For any n-qubit Weyl operator Wx, the function fx : S2n → R defined by

fx(|ψ⟩) = ⟨ψ|Wx |ψ⟩ is 2-Lipschitz.

Proof. Write Wx = Π+ − Π− where Π+ and Π− are the projectors onto the positive and

negative eigenspaces of Wx, respectively. Then,
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|fx(|ψ⟩)− fx(|φ⟩)| = |⟨ψ|Wx |ψ⟩ − ⟨φ|Wx |φ⟩|

= |⟨ψ|Π+ |ψ⟩ − ⟨φ|Π+ |φ⟩ − ⟨ψ|Π− |ψ⟩+ ⟨φ|Π− |φ⟩|

≤ |⟨ψ|Π+ |ψ⟩ − ⟨φ|Π+ |φ⟩|+ |⟨ψ|Π− |ψ⟩+ ⟨φ|Π− |φ⟩|

= | ∥Π+ |ψ⟩∥2 − ∥Π+ |φ⟩∥|2 + |∥Π− |ψ⟩∥2 − ∥Π− |φ⟩∥2|

≤ ∥Π+(|ψ⟩ − |φ⟩)∥2 + ∥Π−(|ψ⟩ − |φ⟩)∥2

≤ 2∥|ψ⟩ − |φ⟩∥2,

where the third and fifth lines apply the triangle inequality, and the fourth and sixth lines

use the fact that Π+ and Π− are projectors.

Corollary 8.9. Let Wx be any n-qubit Weyl operator in which x ̸= 0 (i.e., Wx ̸= I). Then:

Pr
|ψ⟩∼µHaar

[|⟨ψ|Wx|ψ⟩| ≥ ε] ≤ 2 exp

(
− 2nε2

36π3

)
.

Proof. Define fx(|ψ⟩) = ⟨ψ|Wx |ψ⟩ as in Lemma 8.8. By Lemma 8.8, we know that fx is

2-Lipschitz. Additionally, observe that E[f ] = 0 over the Haar measure because exactly half

of the eigenvalues of Wx are 1 and the other half are −1. Then the corollary follows from

Lemma 8.7.

Corollary 8.10.

Pr
|ψ⟩∼µHaar

[∃x ̸= 0 : |⟨ψ|Wx|ψ⟩| ≥ ε] ≤ 22n+1 exp

(
− 2nε2

36π3

)
.

Proof. This follows from Corollary 8.9 and a union bound over all 22n possible Weyl opera-

tors.

Note that if ε ≥ 1
poly(n)

, then the probability bound in Corollary 8.10 is doubly-

exponentially small.
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We have now shown that, with high probability, all Weyl measurements (except

Wx = I) are close to 0. As a result, we can think of pψ (and critically qψ as well, due to

Corollary 4.3) as well-spread and similar to the uniform distribution over F2n
2 due to the lack

of heavy-hitters.

8.2 Distinguishing From Haar-Random Based on Stabilizer Fi-
delity

To efficiently distinguish a state with low stabilizer complexity (meaning, a state

with low stabilizer extent or non-negligible stabilizer fidelity) from a Haar-random one, we

require a property or statistic of the state that distinguishes it from Haar-random. It turns

out that η from Algorithm 2 is actually one! We have already proven that η ≥ FS(|ψ⟩)6

(Proposition 5.3), so now we need to show that η is small for a Haar random state with high

probability over the Haar measure.

Lemma 8.11. Let |ψ⟩ be an n-qubit pure state. If the stabilizer fidelity of |ψ⟩ is at least τ ,

then

η := E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≥ τ 6.

In contrast, if |ψ⟩ is Haar-random, then, with probability at least

1− 22n+1 exp

(
−25n/6

36π3

(
2n − 2n/2

4n − 1

)1/3
)

over the Haar measure,

η := E
x∼qψ

[
|⟨ψ|Wx|ψ⟩|2

]
≤ 2−n/2.

Proof. The first part is already stated as Proposition 5.3.

Now suppose |ψ⟩ is a Haar-random state. By Corollary 8.10, for all Wx ̸= I,
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|⟨ψ|Wx|ψ⟩|2 = 2np(x) ≤ ε2 with probability 1− 22n+1 exp
(
− 2nε2

36π3

)
. Therefore by Fact 5.2,

η = 4n
∑
x∈F2n

2

p(x)3

= 4n

(
1

8n
+
∑
x ̸=0

p(x)3

)

≤ 1 + (4n − 1)ε6

2n
,

with probability at least 1− 22n+1 exp
(
− 2nε2

36π3

)
. By setting ϵ2 = 1

2n/6

(
2n−2n/2

4n−1

)1/3
, we get

η ≤ 1

2n/2

with probability at least 1− 22n+1 exp

(
−25n/6

36π3

(
2n−2n/2

4n−1

)1/3)
.

We note that while the expression is complicated, the failure probability is doubly-

exponentially for suitably large n.

Theorem 8.12. Let |ψ⟩ be an unknown n-qubit pure state. Algorithm 2 distinguishes whether

|ψ⟩ is Haar-random or a state with stabilizer fidelity at least τ , promised that one of these

is the case. The algorithm uses O
(
τ−12 log 1

δ

)
copies of |ψ⟩ and O(nτ−12 log 1

δ
) time, and

distinguishes the two cases with success probability at least 1− δ.

Let us assume that the second part of Lemma 8.11 is true. Our algorithm then

amounts to estimating the quantity η via Algorithm 2 with β1 = τ 6 and β2 = 2−n/2 to

probability δ/2. For appropriately large n and τ = O(poly(n)), the gap γ = β1 − β2 =

O(τ 6). Thus Lemma 5.5 tells us that for τ = O(poly(n) and sufficiently large n, we can

distinguish between low-stabilizer-complexity and Haar-random states using O
(

1
τ12

log 1
δ

)
samples and O

(
n
τ12

log 1
δ

)
time. By the union bound, our failure probability is at most
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δ/2 + 22n+1 exp

(
−25n/6

36π3

(
2n−2n/2

4n−1

)1/3)
which is less than δ for suitably large n (and δ that

is not doubly-exponentially small).

All of these results also apply to states with stabilizer extent at most τ−1, since by

Claim 2.36, such states have stabilizer fidelity at least τ .

Corollary 8.13. Let |ψ⟩ be an unknown n-qubit pure state. Algorithm 2 distinguishes

whether |ψ⟩ is Haar-random or a state with stabilizer extent at most τ−1, promised that

one of these is the case. The algorithm uses O
(
τ−12 log 1

δ

)
copies of |ψ⟩ and O(nτ−12 log 1

δ
)

time, and distinguishes the two cases with success probability at least 1− δ.

The above result immediately implies that output states of Clifford+T circuits with

few T -gates cannot be computationally pseudorandom.

Corollary 8.14. Any family of Clifford+T circuits that produces an ensemble of n-qubit

computationally pseudorandom quantum states must use at least ω(log n) T -gates.

Proof. Consider any ensemble of states wherein each state in the ensemble is the output of

some Clifford+T circuit with at most K log n T -gates. By Lemma 8.6, the stabilizer extent

of any such state |ψ⟩ is at most nαK for α ≤ 0.7716. By Corollary 8.13, on input copies

of |ψ⟩, the algorithm from Theorem 8.12 takes O(n12αK+1) ≤ poly(n) time and outputs 1

with probability at least 2
3
. On the other hand, if |ψ⟩ is a Haar-random state then the same

algorithm outputs 1 with probability at most 1
3
. As such, the algorithm’s distinguishing

advantage between the ensemble and the Haar measure is non-negligible. This is to say that

the ensemble cannot be pseudorandom under the definition of [JLS18].

8.3 Distinguishing From Haar-Random Based on Stabilizer Di-
mension

Similar to how Algorithm 2 can be used to test for Haar randomness, so too can

Algorithm 4. In particular (just like the fidelity setting’s completeness case), we already
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know that if the stabilizer dimension is greater than zero, then the support of qψ can have

dimension at most 2n−1. This would give us perfect completeness, and indeed Corollary 7.4

tells us that if we use less than n/2 non-Clifford gates than this will be the case.

For soundness, we need to show that if |ψ⟩ is Haar-random, then qψ is well-supported

over the entirety of F2n
2 in the sense that every proper subspace of F2n

2 contains a bounded

fraction of the qψ mass. This implies that sampling from qψ gives 2n linearly independent

elements of F2n
2 after a reasonable number of iterations. The idea is to combine the concen-

tration of pψ (Corollary 8.10) with the fact (Theorem 4.2) that the qψ mass on a subspace

is proportional to its p2ψ mass on the symplectic complement to obtain the following.

Lemma 8.15. Let |ψ⟩ be a Haar-random n-qubit state. Then with probability all subspaces

T ⊆ F2n
2 of dimension 2n− 1 simultaneously satisfy

∑
x∈T

qψ(x) ≤
2

3
,

except with probability at most

22n+1 exp

(
− 2n

36
√
3π3

)
.

Proof. Let T be any subspace of dimension 2n − 1. Then the symplectic complement T⊥

has dimension 1, so it is the span of a single nonzero x ∈ F2n
2 . By Theorem 4.2,

∑
a∈T

qψ(a) = 22n−1
∑
a∈T⊥

pψ(a)
2 =

1 + ⟨ψ|Wx|ψ⟩4

2
.

Hence, the probability that there exists a T for which
∑

x∈T qψ(x) exceeds
2
3
is at most the

probability that there exists a nonzero x for which |⟨ψ|Wx|ψ⟩| ≥ 1
4√3
. By Corollary 8.10, this

probability is at most 22n+1 exp
(
− 2n

36
√
3π3

)
.

We are now ready to analyze the soundness case for when |ψ⟩ is Haar random.
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Lemma 8.16. Let |ψ⟩ be an n-qubit Haar-random quantum state and fix δ > 0. Taking

6n+ 9
2
log 2

δ
samples from qψ suffices to sample 2n linearly independent elements of F2n

2 with

probability at least 1− δ over both the Haar measure and the sampling process.

Proof. By Lemma 8.15,
∑

x∈T ′
i
qψ(x) ≤ 2

3
for all T ′ with dim(T ′) = 2n− 1, with overwhelm-

ingly high probability over the Haar measure. Let us assume that this has happened. By

the fact that
∑

x∈F2n
2
qψ(x) = 1, we find that

∑
x∈F2n

2 \T ′

qψ(x) ≥
1

3
.

Applying Lemma 3.10 with c = 1
3
, we can show that 6n+ 3 log 2

δ
samples suffice to generate

F2n
2 with probability at least 1 − δ

2
. By the union bound, the total failure probability over

both the Haar measure and the samples is at most

δ

2
+ 22n+1 exp

(
− 2n

36
√
3π3

)
which in turn is at most δ, for reasonable choices of δ.1

Theorem 8.17. Algorithm 4 with parameters k = n−1, ε = 1/4, and failure probability δ/2

succeeds at distinguishing whether |ψ⟩ is Haar-random or a state with stabilizer dimension

at least 1 with probability at least 1− δ. It uses O(n+ log 1
δ
) copies of of the input state and

O(n3 + n2 log 1
δ
) time.

Proof. In the case that |ψ⟩ is has stabilizer dimension non-zero, qψ is supported on a subspace

of dimension at most 2n− 1 by Corollary 4.5, so the algorithm always outputs 1. Therefore,

we need only argue that in the case that |ψ⟩ is Haar-random we see at least 2n linearly

1Of course, the union bound fails when δ is doubly exponentially small, as our bound for the error over the

Haar measure is 2−2O(n)

. However, in this setting, it is information-theoretically impossible to distinguish a
state from Haar-random.
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independent elements of F2n
2 . We note that the number of samples used by Algorithm 4 with

parameters k = n− 1, ε = 1/4, and failure probability δ/2 is

32n+ 8 log 2
δ

ε
= 128n+ 32 log

2

δ
.

Since this is greater than the 6n + 9
2
log 1

δ
samples needed for Lemma 8.16, we will see 2n

linearly independent elements of F2n
2 with probability at least 1 − δ over the Haar measure

and the sampling process.

It is clear that the sample complexity is O(m) = O(n + log 1
δ
). To analyze the time

complexity, we note that each sample takes O(n) time, so sampling takes O(mn) time.

Gaussian elimination takes O(mn2) = O(n3+n2 log 1
δ
) time and is the dominating term.

In the case that |ψ⟩ is the output of a t-doped Clifford circuit, qψ is supported on

a subspace of dimension at most n + 2t by Corollary 7.4, so the algorithm always outputs

1. This immediately implies a lower bound on the number of single-qubit non-Clifford gates

needed to prepare an ensemble of n-qubit computationally pseudorandom quantum states.

Corollary 8.18. Any family of t-doped Clifford circuits that produces an ensemble of n-qubit

computationally pseudorandom quantum states must satisfy t ≥ n/2.

Proof. By Corollary 7.4, if t < n/2 then the output states will have stabilizer dimension at

least 1. By Theorem 8.17, there exists an efficient algorithm that can distinguish these state

from Haar random with non-negligible probability.

Finally, note that this lower bound can be improved by a factor of 2 in the special

case that all of the non-Clifford gates are diagonal (e.g., T -gates), because of the improved

lower bound on stabilizer dimension in Lemma 7.3 for this case.

Corollary 8.19. Any family of Clifford+T circuits that produces an ensemble of n-qubit

computationally pseudorandom quantum states must use at least n T -gates.
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Part II

Statistical Learning Theory for
Quantum States and Circuits
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Chapter 9

Statistical Learning Theory Preliminaries

This chapter is an overview of basics concepts in Learning Theory. It borrows from

[Lia23] and [GL22], which was joint work with Aravind Gollakota.

9.1 PAC learning

The goal of PAC learning is to learn a function relative to a certain distribution of

inputs, rather than in an absolute sense. Let’s say we want to learn an arbitrary f from

some concept class C. If a hypothesis function h matches the true function f on many of the

high probability inputs, then we can say that we have approximately learned f . If we can do

this with high probability for arbitrary f , then we probably approximately (PAC) learned C.

Definition 9.1. Let Ω be some domain of inputs and let C be a set of functions f : Ω → [0, 1].

We say that C is (ε, δ)-PAC-learnable if there exists a learner that, when given samples of

the form (x, f(x)) for x ∼ D for arbitrary f and unknown distribution D, outputs with

probability at least 1 − δ, over both the samples and the learning algorithm, a hypothesis h

with error1 satisfying

E
x∼D

[
(f(x)− h(x))2

]
≤ ε.

The number of samples used is referred to as the sample complexity, and we refer to

1Since this problem is a regression problem rather than binary classification, we claim that this squared-
loss is a more natural notion of error than the kind used in [Aar07], [CD20], and other older papers [AB00].
It also allows us to express PAC learning using only 2 error parameters, rather than 3. We can also still

recover some form of the 3 parameter bound using Prx∼D[|f(x)− h(x)| > t] ≤ 1
t2 Ex∼D

[
(f(x)− h(x))

2
]
via

Markov’s inequality.
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the learner being efficient if it can find such an h in time poly(n, ε−1, δ−1) for arbitrary ε and

δ.

From here, one can define two types of learning, based on where h comes from. If h

is allowed to be any function that meets the PAC constraints, we refer to this as improper

learning. If instead h ∈ C, we get what is known as proper learning, which will be the

focus of the proceeding chapters. With proper learning, we can then begin to talk about the

consistency problem formally.

Definition 9.2. Let S refer to a set of labeled samples. ConsistentSearch(C, s) is the

problem of, given an arbitrary S such that |S| < s, finding a function h ∈ C that is consistent

with all of S (i.e., for all (x, f(x)) ∈ S, f(x) = h(x)) if such an h exists, otherwise reject.

9.1.1 Generalization

Intuitively, given a set of samples the best one can really hope to do is find such an h

that gets zero training error and hope that the true error for h is also low. This leads to the

idea of generalization, which aims to show that doing well on a large enough set of training

data (i.e., the consistency problem) allows one to give the PAC guarantee as well with high

probability. In terms of computational efficiency, this effectively reduces the problem of

proper learning to the consistency problem, or an approximation of the consistency problem.

The most common approach to guarantee generalization is to bound the “expressiveness” of

the concept class, such as with the VC-dimension [BEHW89]. Since VC-dimension is defined

for {0, 1} labels, we will now give a generalization of VC-dimension in the regression setting.

Definition 9.3. Let Ω be some domain of inputs, η > 0, and let C be a set of functions

f : Ω → [0, 1]. We say that a set of inputs {x1, x2, · · · , xm} ⊆ Ω is η-fat-shattered by C

if there exists a set y1, y2, · · · , ym ∈ [0, 1] such that for any vector b = {±1}m there is an

fC ∈ C that satisfies bi · (fC(xi)− yi) ≥ η.
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Definition 9.4. The η-fat-shattering dimension of a concept class C is the size of the largest

set of inputs that is fat-shattered by C. We denote this as fatC(η).

At a high-level, the η parameter provides a buffer such that each fC(xi) is robustly

bounded away from yi by η in the appropriate direction. We now give a result saying that

bounded fat-shattering dimension implies generalization from the training data to the actual

learning task.

Theorem 9.5 ([AB00] Corollary 3.3). Let C be a concept class from Ω to [0, 1] and let D be

some distribution on Ω. Let δ, ε, α, β ∈ (0, 1) be parameters such that β > α. Furthermore,

let {x1, x2, · · · , xm} and {y1, y2, · · · , ym} be a set of m samples drawn i.i.d. from some

distribution D where yi = f(xi) for some f ∈ C. If h ∈ C satisfies |h(xi) − yi| ≤ α for all

1 ≤ i ≤ m then

m = O

(
1

ε

(
fatC

(
β − α

8

)
log2

(
fatC

(
β−α
8

)
(β − α)ε

)
+ log

1

δ

))
number of samples suffices to achieve

E
x∼D

[
(h(x)− f(x))2

]
≤ (1− ε)β2 + ε

with probability at least 1− δ over the samples.

The following folklore bound on fat-shattering dimension is very loose, but still suf-

ficient for our purposes of complexity-theoretic hardness in Section 10.5.

Lemma 9.6 (Folklore). Given a concept class C such that |C| is finite, then for all η > 0,

fatC(η) ≤ log2|C|.

Proof. Assume for the sake of contradiction that C η-fat-shatters the set of points

{x1, x2, · · · , xm} for m > log2|C|. Then C must be able to properly match each b ∈ {±1}m.

There are 2m > |C| possible b vectors, and only one f ∈ C can be used per shattering at-

tempt, since no f can ever satisfy two different b vectors. This is a contradiction since we

don’t have enough f ∈ C to go around to satisfy every b vector.
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9.1.2 Decision Problems

One can also define the decision version of the consistency problem, which is deciding

if there even exists an h ∈ C that is consistent with all of S. We show that the existence of

efficient learning algorithms can imply efficient one-sided error algorithms for the decision

version of the consistency problem.

Definition 9.7. Let ConsistentDecide(C, s) be decision version of the consistency prob-

lem for C using at most s samples.

Proposition 9.8. An efficient randomized
(
ε < α2

s2
, δ < 1

2
+ 1

2s

)
2 proper learning algorithm

implies ConsistentDecide(C, s) ∈ RP where α = infx∈Ω,f(x)̸=g(x)|f(x)− g(x)| is the mini-

mum non-zero error any hypothesis function can make on a single input.

Proof. For every set of samples S such that |S| ≤ s, we can define the DS to be the uniform

distribution over all x ∈ χ such that (x, f(x)) ∈ S. By coupon collector, if we draw O(s log s)

many samples then with probability at least 1 − 1
s
we will have drawn every item from S.

Now imagine that there exists some hypothesis h ∈ C that is not consistent with S. Then

our error must be at least α2

s2
by the definition of α.

Now assume we have some efficient randomized (ε, δ) proper learning algorithm for

ε < α2

s2
and δ < 1

2
+ 1

2s
. When running the learner on an arbitrary DS, it will see samples S

with probability at least 1 − 1
s
. To get error less than α2

s2
the learner must then be able to

solve the search version consistency problem with probability p such that 1
s
+(1− 1

s
)p ≥ 1−δ.

Solving for p we find p ≥ 1
2
on accepting instances.

This gives rise to the following algorithm in RP for solving ConsistentDecide(C, s).

Given samples S with |S| ≤ s, we can run our learning algorithm and pretend that S is what

we sampled from DS to get hypothesis h. If h is consistent with S then accept, otherwise

2We abuse notation to signify that ε is a value less than α2

s2 and likewise for δ < 1
2s .
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reject. On an accepting instance h will be consistent with probability at least 1
2
while on

rejecting instances it will never be consistent so the algorithm will always reject.

Informally, if there exists enough structure on the concept class, it can be possible

to go the other way and show that an efficient algorithm for ConsistentDecide(C, s)

implies an efficient proper learner for C. Namely, if a search-to-decision reduction exists

for the consistency problem on C and fatC is finite then we can also expect to show that

an efficient algorithm for the decision problem would imply an efficient proper learner for

C. Of particular interest are NP-complete problems, which always admit search-to-decision

reductions [Kat11]. We can now give a formal proof of this commonly used technique to

show proper PAC learning if RP = NP.

Lemma 9.9. Let C be a concept class and let

m = Θ

(
1

ε

(
fatC

(
β

8

)
log2

(
fatC

(
β
8

)
βε

)
+ log

1

δ

))

be the parameter from Theorem 9.5 with α = 0. If ConsistentDecide(C, s) for s > m

is NP-complete and RP = NP then for c = O(poly(n)) there exists an efficient algorithm to(
(1− ε)β2 + ε, δ + 1

2c

)
proper learn C.

Proof. Because search-to-decision reductions exist for all NP-complete problems [Kat11], a

zero-error efficient black-box algorithm for ConsistentDecide(C, s) can be used to effi-

ciently solve ConsistentSearch(C, s) as well. Call this algorithm Z. Let us run Z on a

sample S such that s > |S| ≥ m. Since the data is produced by something in C, we are

guaranteed to succeed in search. This means we now have an h ∈ C such that

|h(xi)− f(xi)| = 0 ∀1 ≤ i ≤ k

and so by Theorem 9.5

E
x∼D

[
(h(x)− f(x))2

]
≤ (1− ε)β2 + ε
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with probability at most δ over the samples.

Our goal now will be to show that, even with random errors due to RP, we can

make it so that the probability of differing from Z is arbitrarily small. To start, let γ be

the number of calls to ConsistentDecide(C, s) used in the search-to-decision reduction

for the construction of Z. In order for the reduction to be efficient, γ = O(poly(n)). Since

ConsistentDecide(C, s) is in NP and therefore RP, we have an efficient one-sided constant

error algorithm A for ConsistentDecide(C, s). Using O(c + log γ) = O(poly(n)) many

calls to A and taking the majority, we can get error at most 1
γ·2c . Call this new algorithm

A′ and use it in place of the zero-error oracle for ConsistentDecide(C, s). By the union

bound over all γ calls to A′, the probability that any query to A′ differs from the zero-error

oracle is at most 1
2c
. Thus the probability that the output of A′ differs Z is also at most 1

2c
.

By the union bound over both the samples and the error in A′, the total error prob-

ability is at most δ + 1
2c
.

9.2 PAC Learning Quantum States

A fundamental task in quantum computing is that of learning a description of an

unknown quantum state ρ. Traditionally this is formalized as the problem of quantum

state tomography, where we are granted the ability to form multiple copies of ρ and take

arbitrary measurements, and must learn a state σ that is close to ρ in trace distance. In

an influential work, Aaronson [Aar07] introduced the “Probably Approximately Correct”

(PAC) framework from computational learning theory [Val84] as an alternative perspective

on this problem. Here the key innovation is that instead of learning ρ in an absolute metric

(such as trace distance), we only wish to learn it with respect to a pre-specified distribution

on measurements. This requirement is considerably weaker than that of full tomography.

At this point, it was already established that full tomography would take exponential time,

but Aaronson showed that only a linear number of measurements were necessary for a PAC
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learner!

We begin by formally defining the problem of PAC-learning a quantum state.

Definition 9.10 (PAC-learnability of quantum states, [Aar07]). Let F be a class of n-qubit

quantum states. Let D be a distribution over E, the set of 2-outcome measurements. We say

F is (ε, δ) PAC-learnable with respect to D if there exists a learner that, given sample access

to labeled examples (E,Tr[Eρ]) for E ∼ D and unknown ρ ∈ F , is able to output a state σ

satisfying

E
E∼D

[
(Tr[Eσ]− Tr[Eρ])2

]
≤ ε

with probability at least 1− δ.

We note that this is a slight modification of the original definition in [Aar07], stated

directly in terms of squared loss since this is the view that will be convenient for us. It is

also very important to stress that in this framework, while the data arises from a quantum

state, it is entirely classical in form and representation. That is, all of the quantum actions

have already been taken, and we are at the stage of classical post-processing.

With PAC learners, one may speak of both computational efficiency (overall running

time) and statistical or information-theoretic efficiency (sample complexity). The original

result of Aaronson [Aar07] described a computationally inefficient algorithm for learning

arbitrary states that nevertheless had O(n) sample complexity. An efficient PAC learner is

one that is computationally efficient, i.e., runs in polynomial time, and hence also draws at

most polynomially many examples (each draw is considered as taking one unit of time).

Aaronson was able to prove the following generalization result for quantum states.

We present a modified form of it in terms of squared loss.

Proposition 9.11 ([Aar07] Theorem 1.13). Let ρ be an n-qubit mixed state, D a distribution

over two-outcome measurements of ρ and let {E1, · · · , Em} ⊆ E be a training set consisting of

3For an alternative proof to [Aar07], see [Aar22, Lecture 22].
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m measurements drawn from D. In addition, fix error parameters ε, α, β > 0 with βε ≥ 7α.

If hypothesis quantum state σ satisfies

∣∣Tr[Eiσ]− Tr[Eiρ]
∣∣ ≤ α

for all Ei then

E
E∼D

[
(Tr[Eiσ]− Tr[Eiρ])

2] ≤ (1− ε)β2 + ε

with probability at least 1− δ, provided that

m ≥ O

(
1

β2ε2

(
n

β2ε2
log2

1

βε
+ log

1

δ

))
.

The O(n) sample complexity result is a direct result of Proposition 9.11, since with

infinite time, one can solve the exponentially sized SDP to find a hypothesis σ with zero

training error (we note that such a σ must exist since ρ itself always suffices).

9.3 Warmup: PAC Learning Stabilizer States

[Roc18] was able to turn Proposition 9.11 into an time efficient PAC learner for

stabilizer states with Pauli measurements by solving the consistency problem with zero error.

We briefly go over this algorithm to build intuition and establish notation for proceeding

chapters.

First we will define what a Pauli measurement is and what kind of information it

gives.

Definition 9.12. Let C be the class of all n-qubit stabilizer pure states. If P ∈ P±
n is a Pauli

operator with real phase, then the two-outcome measurement associated with P is (I +P )/2,

and is referred to as a Pauli measurement.

Fact 9.13 ([Roc18] Lemma 1). Let EP = I⊗n+P
2

be a Pauli measurement associated to a

Pauli operator P ∈ P±
n and |ϕ⟩⟨ϕ| be an n-qubit stabilizer state. Then Tr

[
EP |ϕ⟩⟨ϕ|

]
can only
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take on the values
{
0, 1

2
, 1
}
, and:

Tr
[
EP |ϕ⟩⟨ϕ|

]
= 1 iff P is a stabilizer of |ϕ⟩⟨ϕ|;

Tr
[
EP |ϕ⟩⟨ϕ|

]
= 1/2 iff neither P nor −P is a stabilizer of |ϕ⟩⟨ϕ|;

Tr
[
EP |ϕ⟩⟨ϕ|

]
= 0 iff −P is a stabilizer of |ϕ⟩⟨ϕ|.

Proof. This is a simple consequence of the definition of a stabilizer state, and the fact that

the Weyl operators form an orthonormal basis under the Frobenius inner product.

Fact 9.13 tells us that the labels of our training data are effectively indicators (with

phase information!) for whether or not a particular member of P±
n is in Stab(|ϕ⟩).

We now give a high-level summary of the algorithm in [Roc18]. First, given a sample(
EP ,Tr[Ep |ϕ⟩⟨ϕ|]

)
, if Tr[Ep |ϕ⟩⟨ϕ|] = 1

2
then we simply ignore the sample. Otherwise, put

±P in a list of members of Stab(|ϕ⟩) according to Fact 9.13. Once enough samples have

been taken according to Proposition 9.11, use a modified form of Gaussian elimination to

find independent generators of Stab(|ϕ⟩). Here, the modification is using Fact 2.27 to keep

track of the phase bit properly. We note that this achieves zero training error due to the

definition of a stabilizer group, so α = 0 such that βε ≥ 7α is always true. We then apply

Proposition 9.11 and appropriately chosen β and ε to (ε′, δ′) PAC learn |ϕ⟩ under D.
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Chapter 10

Clifford Circuits are Hard to PAC Learn

This chapter is based on [Lia23], which also appeared at QTML 2022. Some of the

preliminary results were moved to Chapters 2 and 9.

10.1 Introduction

The goal of efficient learning of quantum states and the circuits that act on them, is

to be able to predict the outcome of various measurements with some degree of accuracy.

For example, given a quantum state ρ and a two-outcome measurement M can we predict

the probability that the measurement accepts?

Naively, one can try and learn everything there is to know about the system via

quantum process tomography [CN97, ABJ+03], the generalization of state tomography to

quantum processes. This also requires exponential time in the number of qubits. Much like

states, it then becomes necessary to restrict what kind of objects we are trying to learn. For

example, Low [Low09] showed how to learn an unknown Clifford circuit by understanding

its action on Pauli matrices using Bell basis measurements. Lai and Cheng [LC22] built on

these results in the case of actually recovering the circuit, as well removing the need for the

inverse of the circuit.

A natural follow-up was whether or not Clifford circuits could be efficiently PAC

learned in an analogous way to stabilizer states. Here, we are given inputs of the form(
ρ, I

⊗n+P
2

)
for some stabilizer state ρ and Pauli matrix P , with labels Tr

[
I⊗n+P

2
CρC†

]
corresponding to an unknown Clifford circuit C and asked to predict future labels. It is
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worth noting that we have slightly altered the definition of PAC learning a quantum circuit

from that of [CD20] to a setting we find more comparable to Aaronson’s original PAC

learning result for quantum states [Aar07]. In the setting introduced by Caro and Datta, the

measurements were limited to being rank 1 projectors with product structure, rather than

the rank 2n−1 projectors we use in our proof.

When one attempts to create a PAC learning algorithm a natural first step is to

try an elimination method, i.e., eliminating options that don’t match the given training

data and then outputting some option that does match the data well. Such algorithms are

known as proper learning algorithms (see Section 9.1 for more details) and were the only

kind of learning algorithms considered when the idea of PAC learning was first introduced

by Valiant [Val84]. And while the learning theory community now considers things like

improper learning algorithms, the original proper learning algorithms generally remain the

most natural class of learning algorithms to consider first. We note for instance that [Roc18]

is a proper learning algorithm, as well as learning algorithms for parities and other well

known learning problems [Kli05]

To that extent, we show in this chapter that an efficient proper learner for Clifford

circuits that achieves 1/poly(n) error exists if and only if RP = NP, effectively ruling out

“straightforward” learning algorithms for Clifford circuits. More generally, these results

apply to any proper learner that achieves arbitrary error (ε, δ) with runtime poly(n, ε−1, δ−1),

which is known as a strong learner. Furthermore, this is true even just for a learner of a

subset of Clifford circuits called CNOT circuits. This subset essentially restricts to the set

of Clifford circuits that map computational basis states to other computational basis states.

We leave open the problem of showing O(1) hardness for proper learners using complexity

theoretic means, such as in [GR09].

One can also imagine that the learning algorithm has access to a quantum computer.

Since there exists problems like factoring [Sho99] for which we have an efficient quantum
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algorithm but not an efficient classical algorithm, this learner may be able to efficiently learn

more expressive concept classes. We also give results for this setting by relating NP to RQP,

the quantum analogue of RP. We now informally state our main theorems regarding CNOT

and Clifford circuits.

Theorem 10.1. There exists an efficient randomized proper PAC learner for CNOT circuits

if and only if RP = NP. Furthermore, an efficient quantum proper PAC learner for CNOT

circuits exists if and only if NP ⊆ RQP.

Corollary 10.2. There exists an efficient randomized proper PAC learner for Clifford cir-

cuits if and only if RP = NP. Furthermore, an efficient quantum proper PAC learner for

Clifford circuits exists if and only if NP ⊆ RQP.

The proofs of these main results starts by realizing that finding a CNOT circuit with

zero training error requires finding a full rank matrix in an affine subspace of matrices under

matrix addition (so as to differentiate from a coset of a matrix group using matrix multiplica-

tion). This is known as the NonSingularity problem [BFS99] and is NP-complete. While

this may seem like a backwards reduction, it turns out that the set of matrix affine subspaces

used to show that NonSingularity can solve 3SAT are a subset of the ones needed to learn

CNOT circuits with zero training error. Thus, there exist a set of samples such that a CNOT

circuit with zero training error exists if and only if the SAT instance is satisfiable. Finding

such a CNOT circuit is what is known as the search version of the consistency problem and

in turn the decision version of the consistency problem is also NP-complete.

To show that an efficient proper learner for CNOT circuits implies RP = NP, we follow

the same proof structure as similar results for NP-hardness of the consistency problem for

2-clause CNF, 3-DNF, or the intersection of two halfspaces [Blu15, BR92, Hag20]. First, let

S be some sample from the decision version of the consistency problem for CNOT circuits.

Using the uniform distribution over each element in S, we will sample every element of S
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with high probability given enough queries. Since S contains at most a polynomial number

of samples, we are able to show that an efficient learner with arbitrary 1/poly(n) error

would necessarily also solve the consistency problem with high enough probability to create

a solution in RP.

Completing the proof in the other direction, if RP = NP we utilize search-to-decision

reductions for NP-complete problems to get an efficient algorithm for the search problem of

minimizing training error. We can treat this search algorithm as our means of generating

a hypothesis circuit C with low training error. By the generalization theorem provided by

[CD20], assuming we have enough samples, this C will properly generalize and have low

true error, thus completing the proof. The quantum forms of the proof essentially come for

free by replacing RP with RQP everywhere and using learners capable of doing quantum

computation.

10.1.1 Related Work

We emphasize that we are dealing with the problem of classically PAC learning a

classical function (i.e., classical labels) derived from a quantum system. This is as opposed

to quantum PAC learning of a classical function as in [Ad17, Ad18, AGY20, QAS21] where

instead of a distribution over samples we receive access to copies of a quantum state. This

state results in the same distribution classically when measured in the computational basis

but can be measured in other basis to get different results. There is also the attempt to

directly learn a quantum process with quantum labels, as in [CL21, Car21]. Here, they do

not choose to measure the output state, and have samples of the form (ρ,M(ρ)) for quantum

process M.
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10.2 Preliminaries

We first define what it means to PAC learn a quantum circuit. We emphasize that

this model is different from that of [CD20], in that the samples and labels are with respect to

a 2-outcome measurement rather than a basis measurement. Instead, it more closely follows

Definition 9.10.

Definition 10.3 (PAC-learnability of quantum circuit). Let C be a class of n-qubit quantum

circuit, F the set of n-qubit quantum states, E be the set of 2-outcome measurements. Let

D be a joint distribution over F × E. We say C is (ε, δ) PAC-learnable with respect to D

if there exists a learner that, given sample access to labeled examples (ρ, E,Tr[ECρC†]) for

(ρ, E) ∼ D and unknown C ∈ C, is able to output a hypothesis U ∈ C satisfying

E
(ρ,E)∼D

[
(Tr[EUρU †]− Tr[ECρC†])2

]
≤ ε

with probability at least 1− δ.

Much like with quantum states, efficient sample complexity can be achieved (see

Appendix A for details), but what about time complexity? Because of the work of Rocchetto

[Roc18], Clifford circuits with Pauli measurements (Definition 9.12) are a prime candidate

for an efficiently PAC-learnable class of circuits. We give a very loose bound on the fat-

shattering dimension of Clifford circuits that is sufficient for our purposes.

Lemma 10.4. Let C be the set of Clifford circuits. For all η > 0, fatC(η) ≤ O(n2).

Proof. By Proposition 2.29 there are at most 2O(n2) Clifford circuits. By Lemma 9.6, the

fat-shattering dimension for all η > 0 is at most log2

(
2O(n2)

)
= O(n2).

Because CNOT circuits are a subset of Clifford circuits, we can also upper-bound the

fat-shattering dimension of CNOT circuits by O(n2).
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10.2.1 Consistency Problem of Clifford Circuits

We now turn to the consistency problem. Noting that each Pauli matrix is Hermitian,

a very natural way to measure a stabilizer state is in a product basis where we measure each

qubit with respect to a Pauli.

Definition 10.5. Let the problem of PAC learning Clifford circuits with respect to Pauli

measurements be defined as follows. Let C be an unknown Clifford circuit and let D be an

unknown joint distribution over both stabilizer states and Pauli measurements. Finally, let

samples to C be given as (
ρ, E,Tr

[
ECρC†])

where ρ, E ∼ D are a stabilizer state and Pauli measurement jointly drawn from D and

represented as classical bit strings using the stabilizer formalism. The goal is to then learn

the measurements Tr
[
ECρC†] up to squared loss ε under the distribution D.

We now revisit Fact 9.13 but account for an unknown Clifford circuit C that acts on

our input state.

Corollary 10.6 ([Roc18] Lemma 1). Let EP = I⊗n+P
2

be a Pauli measurement associated to

a Pauli operator P ∈ Pn and |φ⟩⟨φ| be an n-qubit stabiliser state. Then Tr
[
EPC |φ⟩⟨φ|C†]

can only take on the values
{
0, 1

2
, 1
}
, and:

Tr
[
EPC |φ⟩⟨φ|C†] = 1 iff P is a stabilizer of C |φ⟩⟨φ|C†;

Tr
[
EPC |φ⟩⟨φ|C†] = 1/2 iff neither P nor −P is a stabilizer of C |φ⟩⟨φ|C†;

Tr
[
EPC |φ⟩⟨φ|C†] = 0 iff −P is a stabilizer of C |φ⟩⟨φ|C†.

Proof. We simply use the fact that Clifford circuit C maps |φ⟩⟨φ| to some other stabilizer

state |ϕ⟩⟨ϕ| = C |φ⟩⟨φ|C† then apply Fact 9.13 on |ϕ⟩⟨ϕ|.

What information does a single sample
(
|φi⟩⟨φi| , EPi ,Tr

[
EPiC |φi⟩⟨φi|C†]) tell us?

Let Gi = Stab(|φi⟩). From this, we can gather that if Tr
[
EPiC |φi⟩⟨φi|C†] = 1 then C†PiC ∈
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Gi, and if Tr
[
EPiC |φi⟩⟨φi|C†] = 0 then C†PiC ∈ −Gi where −Gi = {−Pi : Pi ∈ Gi}.

Finally, if Tr
[
EPiC |φi⟩⟨φi|C†] = 1

2
then C†PiC is in the complement of Gi ∪ −Gi.

If the measurement EP appears multiple times across multiple samples, we can gather

further information. For instance, have

SP =
{(

|φi⟩⟨φi| , EP ,Tr
[
EPC |φ⟩⟨φ|C†])}

be the set of all samples such that EP is the measurement taken and let Gi be the sta-

bilizer group of each stabilizer state |φi⟩⟨φi| that appears in SP . Based on each label

Tr
[
EPC |φi⟩⟨φi|C†], we know that C†PC must lie in Hi, which is one of Gi, −Gi or Gi∪−Gi.

We then deduce that C†PC must lie in
⋂
iHi. To actually be a Clifford circuit, we must

also add the constraint that C†PC ̸= I⊗n, giving us

C†PC ∈

(⋂
i

Hi

)
\
{
I⊗n
}
.

The problem of finding a Clifford circuit with zero training error then reduces to the

search problem of finding a set of α, β, γ, θ, p, q from Eq. (2.1) representing a C† that is

consistent with all of these constraints while remaining symplectic according to Eq. (2.2).

Let C be the set of Clifford circuits. We will call this problem CliffordSearch(s) =

ConsistentSearch(C, s)1.

Due to Gottesman-Knill [Got98, AG04] showing that Clifford circuits are classically

simulable, the act of verifying that we have a circuit that has zero training error is efficient,

meaning that the decision version CliffordDecide(s) = ConsistentDecide(C, s) of the

problem is in NP.

Proposition 10.7. The decision problem, CliffordDecide(poly(n)), of deciding if there

exists a Clifford circuit consistent with polynomially sized sample S is in NP.

1We stress that via Definition 10.5, the input states are assumed to be stabilizer states.
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Proof. Given the full encoding (see Section 2.6)A Γ
B Θ
pT qT

 ,
it easy to check that [

A Γ
B Θ

]
forms a symplectic matrix by matrix multiplication over F2 with Λ(n) (Definition 2.30).

Checking that they are consistent with the samples in S can be done by iterating through

S since the trace can be computed efficiently using Gottesman-Knill [AG04].

Knowing this, we find that CliffordSearch(poly(n)) ∈ FNP. This prop-

erty extends to the analogous problems for CNOT circuits, CNOTSearch(poly(n)) and

CNOTDecide(poly(n)), since one can also efficiently verify that Γ = 0 and p = 0.

10.3 Generating Samples with Certain Constraints

We will now show how we can use samples from PAC learning to generate certain

kinds of constraints. It will suffice to only consider CNOT circuits with computational basis

state measurements and measurements of the form {I, Z}⊗n. The net effect of this is that

from a PAC learning standpoint, for unknown CNOT circuit C we only need to figure a set

of C†ZiC that is consistent with the samples as described in Section 10.2. Since we will

never be tested on a measurement with some component of Xi involved, this is equivalent

to finding the θj and qj values from Eq. (2.1) of C†. We will again choose to view the θj as

the matrix Θ, such that Θ must be full rank due to Lemma 2.31.

We introduce the following notation to convert from generators of a stabilizer group

to its corresponding stabilizer state.
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Definition 10.8. Given a set of abelian generators {Pi}, let

ρ(P1, P2, . . . , Pn) =
1

2n

∑
P∈⟨P1,··· ,Pn⟩

P

be the stabilizer state that is formed from that stabilizer group.

The following observation will also notationally make the proceeding theorem states

and proofs easier to follow.

Observation 10.9. Any one-dimensional affine subspace v + ⟨w⟩ can be represented as

{v, v +w} and any set of two vectors/matrices {v, w} represents the one-dimensional affine

subspace v + ⟨v + w⟩. Thus we can freely move between the two representations.

Lemma 10.10. Let C be a CNOT circuit on n qubits and have {v, v + w} ⊂ Fn2 be a

one-dimensional affine subspace of column vectors such that v ̸= w and w, v ̸= 0. Given an

arbitrary pauli P there exists a set of n samples that constrains C†PC to only have consistent

solutions lying in {Zv, Zv+w}. Furthermore these n samples can be efficiently generated.

Proof. Let (v, w, v3, · · · , vn) be an arbitrary basis for Fn2 containing v and w. This can be

found with O(n) random vectors and the use of Gaussian elimination. Recalling Defini-

tion 2.13, let us start by creating the sample((
ρ(Zv, Zw, Zv3 , Zv4 , . . . , Zvn),

I⊗n + P

2

)
, 1

)
,

which limits C†PC to be in {I, Z}⊗n with positive phase. We can create the set of samples:((
ρ(Zv, Zw,−Zv3 ,Zv4 , . . . , Zvn),

I⊗n + P

2

)
, 1

)
,((

ρ(Zv, Zw, Zv3 ,−Zv4 , . . . , Zvn),
I⊗n + P

2

)
, 1

)
,

...((
ρ(Zv, Zw, Zv3 ,Zv4 , . . . ,−Zvn),

I⊗n + P

2

)
, 1

)
.
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By construction C†PC cannot have any component of Zv3 because of the first sample of this

set, nor any Zvi for i > 3 due to the remaining samples. This leaves C†PC to be one of

Zv, Zw, or Zv+w (since it cannot be identity). To remedy this, we can introduce the final

sample: ((
ρ(−Zv, Zw, Zv3 , Zv4 , . . . Zvn ,

I⊗n + P

2

)
, 0

)
,

which then eliminates Zw (and identity, due to the negative sign). The total number of

samples is n and the whole process takes polynomial in n time to find the basis and create

said samples.

We can easily extend this to the 0-dimensional case by simply treating w as v2, using

an extra sample to remove the last dimension. More importantly, let’s say we’ve constrained

C†ZxC to lie in {Zv, Zv+w}. The effect of this on Θ is that if we sum the columns i where

xi = 1 then the sum must lie in {v, v + w}.

Corollary 10.11. Let

{v, v + w} =


 | | | |
v1 v2 . . . vk
| | | |

 ,
 | | | |
v1 + w1 v2 + w2 . . . vk + wk

| | | |


be a one-dimensional affine subspace of n × k matrices over F2 such that for all i, vi ̸= wi

and vi, wi ̸= 0. Finally, let Θ′ be an arbitrary n× k submatrix of Θ. Then there exists a set

of (2k − 1)n samples that constrain Θ′ to only have consistent solutions lying in {v, v + w}

for CNOT circuit C. Furthermore these samples can be efficiently generated.

Proof. WLOG, we will let the set of k different columns we choose for Θ′ to be columns 1

through k. We will use induction on k to prove this corollary, with the base case covered by

Lemma 10.10. Now let us assume that we have samples that constrain columns 2 through k

to be either  | | | |
v2 v3 . . . vk
| | | |

 or

 | | | |
v2 + w2 v2 + w3 . . . vk + wk

| | | |

 .
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The goal will be to generate constraints such that if column 2 is v2 then column 1 must be

v1. Otherwise, if column 2 is v2 + w2 then column 1 is constrained to be v1 + w1.

To start us off, we can use Lemma 10.10 to constrain the sum of columns 1 and 2 to

be either v1 +w1 or v1 +w1 + v2 +w2. If we focus on columns 1 and 2, the solutions to this

constraint lie in an affine subspace defined by: | |
v1 + v2 + u u

| |

 or

 | |
v1 + w1 + v2 + w2 + u u

| |


for arbitrary vector u. We then apply Lemma 10.10 again to constrain column 1 to be either

v1 or v1 + w1. Thus the first two columns must either be | |
v1 v2
| |

 or

 | |
v1 + w1 v2 + w2

| |


Finally, to lie in the intersection from the inductive hypothesis, we note that if the second

column is v2 or v2 + w2 then columns 3 through k must be | | | |
v3 v4 . . . vk
| | | |

 or

 | | | |
v3 + w3 v4 + w4 . . . vk + wk

| | | |

 .
respectively.

Collectively, we achieve our goal of constraining the entire solution to lie in v+⟨w⟩. We

used n samples at the first step and 2n for every inductive step after (one set of n samples

for each call of Lemma 10.10), giving us a total number of samples of 2n(k − 1) + n =

2kn− 2n+ n = (2k− 1)n. Since each step was efficient, the whole process takes polynomial

in n time to generate all of the samples.

10.4 On the NP-completeness of NonSingularity

Definition 10.12. Given n × n matrices M0,M1, . . . ,Mm over some field F, NonSingu-

larity is the problem of deciding if there exists α1, α2, . . . , αm ∈ F such that M0 +
∑

i αiMi

results in a non-singular matrix.
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Theorem 10.13 ([BFS99] Corollary 10). NonSingularity over F2 is NP-complete.

The high level idea of the proof is to first reduce a 3SAT instance over variables {xi}

to solving an arithmetic formula F . The formula is then turned into a weighted directed

graph whose adjacency matrix M(x) has a determinant that is equal to the formula F ,

where M(x) has entries from F2 ∪ {xi}, and can thus be viewed as an affine subspace over

F(|F |+2)×(|F |+2)
2 .

While we will not prove the correctness of this statement, we will want to ascertain

exactly what kind ofMi are formed through the reduction. We now describe the construction

of the graph (see Figs. 10.1 and 10.2 for relevant illustrations):

• For each atomic formula F ′, create vertices s and t.

For each constant c create a unique node vc with a path from s to vc with weight

c and a path from vc to t with weight 1.

For each variable xi create a unique node vxi with a path from s to vxi with weight

xi and a path from vxi to t with weight 1.

• For multiplication of Fi and Fj, place the graphs of Fi and Fj in series.

• For addition of Fi and Fj, place the graphs of Fi and Fj in parallel.

• Once all of this is done, create a path of weight 1 from the global t vertex to the global

s vertex.

• Create self loops at every vertex besides the global s vertex.

Let M be the resulting adjacency matrix of this graph. For every entry that is a

constant, we can assign that to M0. Then for each variable xi, we can set Mi to be the
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Formula F The series-parallel s-t graph GF with edge withs

Constant c s t
c 1

Variable x s t
x 1

F = F1 · F2 GF1 GF2
s = s1

t1 = s2

t = t2

F = F1 + F2

GF1

GF2

s = s1 = s2 t = t1 = t2

Figure 10.1: Inductive Construction from Formula to Graph
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F : x1(x2 + x3) + x3 · x4

s t
x1 1

x2

x3

1

1

x3

1 x4

1

1

1 1

1

1

1

1

1

1



0 x1 0 0 0 x3 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 x2 x3 0 0 0 0
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 x4 0
0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 1


Figure 10.2: Example of constructing the adjacency matrix with a specific determinant
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matrix that is zero everywhere except where xi appears in M . As an example, for a matrix

M(x) =

(
x1 1
x2 x1

)

we can describe it using M(x) =M0 + x1M1 + x2M2 where

M0 =

(
0 1
0 0

)
M1 =

(
1 0
0 1

)
M2 =

(
0 0
1 0

)

For a more succinct reduction later in Section 10.5, we want to isolate the kinds of

matrix affine subspaces over F2 that are hard to solve (i.e., are used in the reduction from

3SAT). The following notation will be beneficial for that.

Definition 10.14. For a n× n matrix M over a field F, let NZ(M) ⊆ {1, 2, · · · , n} be the

columns of M that are non-zero (i.e., are not the all zeros vector).

Definition 10.15. Let M and W be n × n matrices over a field F and let k := |NZ(W )|

such that NZ(W ) = {i1, i2, · · · ik}. If

M =

 | | | |
m1 m2 . . . mn

| | | |


then the restriction of the columns of M to the non-zero columns of W is defined as

RW (M) =

 | | | |
mi1 mi2 . . . mik

| | | |

 .
Likewise, for a set of matrices S, RW (S) = {RW (M) :M ∈ S}.

We now define the modified version of NonSingularity and show that it is still

NP-complete.

Definition 10.16. Let M = M0 + ⟨M1,M2, · · ·Mm⟩ be an matrix affine subspace of n × n

matrices over some field F. In addition, require the Mi have the property that NZ(Mi) ∩
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NZ(Mj) = ∅ for all i > 0 and j > 0. Finally, for all i > 0 with ki := |NZ(Mi)|, constrain

M0 and Mi such that the restriction of M to the non-zero columns of Mi,

RMi
(M) = RMi

({M0,M0 +Mi}),

can be represented as:
 | | | |
v1 v2 . . . vki
| | | |

 ,
 | | | |
v1 + w1 v2 + w2 . . . vki + wki

| | | |


for some v and w such that vj ̸= wj and vj, wj ̸= 0. The problem of deciding if there exists

α1, α2, · · · , αm ∈ F such that M0 +
∑

i αiMi results in a non-singular matrix will be called

the Modified-NonSingularity problem.

Corollary 10.17. The Modified-NonSingularity problem is NP-complete over F2.

Proof. Rather than reduce NonSingularity to Modified-NonSingularity, we instead

reduce 3SAT to Modified-NonSingularity directly by showing that the reduction from

3SAT to NonSingularity naturally leads to instances of Modified-NonSingularity.

Let G be the graph produced by the reduction from 3SAT with adjacency matrix

M(x). By the construction of M(x) given by Fig. 10.1, we see that every instance of a

variable will create its own unique subgraph such that the instance of each variable connects

to a unique vertex. Because this unique vertex can never be used as an s or t vertex from

Fig. 10.1, that vertex also necessarily has in-degree 1 so that no other edges connect to it.

Because these are the only vertices that have incoming edges assigned with variable weight,

this conversely means that the columns of M(x) contain at most one variable.

Recall that for variable xi with i > 0, the matrix Mi we form from the decomposition

of M(x) is the entries associated with xi. Since each column only contains at most one xi,

then NZ(Mi) ∩NZ(Mj) must be disjoint for i > 0 and j > 0. Due to the constraint being
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met, we know that the RMi
(M) is confined to a one-dimensional affine subspace. As such,

it can be represented as:
 | | | |
v1 v2 . . . vki
| | | |

 ,
 | | | |
v1 + w1 v2 + w2 . . . vki + wki

| | | |


for some v and w, where the v is a sub-matrix of M0 and w is the corresponding sub-matrix

for Mi. Due to the definition of NZ(Mi) it is clear that the wj are non-zero. Furthermore,

since the weight of an edge will never be xi + 1 then an entry of wj being one implies the

corresponding entry of vj is zero. This implies vj ̸= wj for all j. Finally, to ensure that

vj ̸= 0, we note that each vertex besides s receives a self loop with weight 1. s instead

receives an edge from t with weight 1. These self loops and the edge from t to s ensures that

each column of M0 has at least entry with 1 in it such that the vj ̸= 0.

We have now shown that every matrix affine subspace produced from the reduction in

[BFS99] also meets the requirements for Modified-NonSingularity, thus showing that

this problem is also NP-complete.

10.5 PAC Learning CNOT Circuits and NP

Lemma 10.18. The decision problem, CNOTDecide(2n2), of deciding whether or not

there exists a CNOT circuit consistent with at most 2n2 samples is NP-complete.

Proof. By Corollary 10.17 and the Cook-Levin theorem 2, if a problem can be used to solve

Modified-NonSingularity then it is NP-hard. Looking at each individual Mi for i > 0

from Definition 10.16, they are all non-zero on disjoint columns. If we restrict to the non-

zero columns of a particular Mi for i > 0, we find that RMi
(M) meet the requirements for

Corollary 10.11. Since the Mi act on disjoint columns, if we apply Corollary 10.11 for each

RMi
(Mi) then we have efficiently created a set of samples Si that restricts those columns

2See [KT22] for details.
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of Θ, the matrix form of the θj values in Eq. (2.1), to lie in RMi
({M0,M0 +Mi}). To fix

the columns not touched by the Mi, it is not hard to show that the ideas of Lemma 10.10

can also create a 0-dimensional affine space over these columns, thereby setting the whole

matrix to lie in M0+ ⟨M1,M2, · · ·Mm⟩. Let such samples be called T . Altogether, by taking

S = T ∪ (
⋃
i Si) we are able to use Lemma 10.10 and Corollary 10.11 to set Θ to lie in M(x)

from Modified-NonSingularity.

If M(x) is an accepting instance of Modified-Singularity then there must be a

full rank Θ that is consistent with S. Since Lemma 2.32 ensures us that CNOT circuits

can instantiate any full rank Θ, there must also exist a CNOT circuit consistent with S.

Alternatively, if M(x) does not contain a non-singular matrix, then there does not exist a

full rank theta that is consistent with S. By Lemma 2.31 there cannot exist a CNOT circuit

that is consistent with the data. This gives us that M(x) contains a non-singular matrix if

and only if there is a CNOT circuit consistent S, which can be produced efficiently.

We now count the number of samples used. For each all 1 ≤ i ≤ m, we use n

samples to constrain the first column of NZ(Mi). For the remaining columns, we either use

2n if that column is contained in some NZ(Mj), otherwise, we use n + 1 samples from the

generalization of Lemma 10.10. Since 2n >= n + 1 for n ≥ 1, we use at most 2n(n − m)

samples for the remainder, giving us at most 2n(n−m) + nm = 2n2 −mn ≤ 2n2 samples.

This shows CNOTDecide(2n2) is NP-hard. Combined with Proposition 10.7 we find that

CNOTDecide(2n2) to be NP-complete.

Since CNOTDecide(2n2) ⊂ CNOTDecide(poly(n)) then CNOTDecide(poly(n))

is also NP-hard.

Theorem 10.19 (Formal Statement of Theorem 10.1). There exists an efficient randomized

(ε, δ) proper PAC learner for CNOT circuits with arbitrary ε and δ as arbitrary 1
poly(n)

values

if and only if RP = NP. Furthermore, an efficient quantum (ε, δ) proper PAC learner
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for CNOT circuits with arbitrary ε and δ as arbitrary 1
poly(n)

values exists if and only if

NP ⊆ RQP.

Proof. We will start by proving the NP ⊆ RP version for classical randomized learners. The

quantum version will follow trivially by replacing the learner with a quantum algorithm and

therefore RP with RQP. The only change then is that NP ⊆ RQP does not necessary imply

NP = RQP like it does with RP.

Because CNOT circuits with classical inputs and measurements only has labels 0 and

1, the smallest non-zero error is 1. By Proposition 9.8 with α = 1, an efficient(
ε <

1

4n4
, δ <

1

2
+

1

4n2

)
3

randomized proper learner for CNOT circuits will imply CNOTDecide(2n2) ∈ RP. Since

CNOTDecide(2n2) is NP-complete by Lemma 10.18, efficient randomized learners for

CNOT circuits with arbitrary ε = 1
poly(n)

and δ = 1
poly(n)

are only possible if NP ⊆ RP.

Conversely, by Lemmas 9.9 and 10.4 with β = 1
2
, c = poly(n), ε = 4ε′−1

3
, and δ =

δ′ − 2−c if NP ⊆ RP then there must exist an efficient (ε′, δ′) proper learner for CNOT

circuits as long as the number of samples m is polynomial in n. For arbitrary ε′ = 1
poly(n)

and δ′ = 1
poly(n)

our required number of samples becomes

m = Θ

(
1

ε

(
fatC

(
β

8

)
log2

(
fatC

(
β
8

)
βε

)
+ log

1

δ

))
= O(poly(n))

This is sufficiently small as desired, completing the proof.

Corollary 10.20 (Formal Statement of Corollary 10.2). There exists an efficient randomized

(ε, δ) proper PAC learner for Clifford circuits with arbitrary ε and δ as arbitrary 1
poly(n)

values if and only if RP = NP. Furthermore, an efficient quantum (ε, δ) proper PAC learner

3We again abuse notation to signify that ε is a value less than 1
4n4 and likewise for δ < 1

2 + 1
4n2 .
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for Clifford circuits with arbitrary ε and δ as arbitrary 1
poly(n)

values exists if and only if

NP ⊆ RQP.

Proof. Since CNOT circuits are also a form of Clifford circuits, CNOTDecide(2n2) ⊂

CliffordDecide(2n2), and so CliffordDecide(2n2) is also NP-hard. Combined with

Proposition 10.7, we get that it is NP-complete. The proof of Theorem 10.19 continues but

with α = 1
2
instead due to Corollary 10.6. This leads to slightly different constants, but the

proof ideas all follow without major change.

10.6 Special Cases with Efficient Proper Learners

Despite the results given, there still exist situations where it is possible to efficiently

proper learn Clifford circuits and CNOT circuits. We give brief proof sketches of some of

them here.

10.6.1 CNOT Circuits for a Distribution with Support over a Single Measure-
ment

Let us try to learn CNOT circuits with regard to a distribution D such that there

exists some pauli P ∈ {I, Z}⊗n with P(ρ,E)∼D[E = I⊗n+P
2

] = 1. Because we are dealing with

CNOT circuit the labels will always be 0 and 1 so by Corollary 10.6 each label will tell us

an affine subspace that C†PC lies in. We can efficiently compute the intersection of this

using Gaussian elimination with the generators to find a P ′ that is consistent will all of the

labels. From there, let P,Q2, Q3, . . . , Qn be a set of Paulis whose span is {I, Z}⊗n. Let

P ′, Q′
2, Q

′
3, . . . , Q

′
n also be a set of Paulis whose span is {I, Z}⊗n. It is clear that if we define

our CNOT circuit such that C†PC = P ′ and C†QiC = Q′
i then we have a valid CNOT

circuit. Efficiently finding such {Qi} and {Q′
i} only takes O(n) expected samples of random

Paulis in {I, Z}⊗n and so can be done efficiently. Appealing to both Proposition 2.29 and

Theorem 9.5 completes the proof.
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10.6.2 Clifford circuits with the Uniform Distribution over Pauli Measurements

We note that if the distribution D entails the measurements being uniform over the

Paulis then the problem is trivially easy to properly learn with ε < 1
exp(n)

and δ = 0 by just

outputting a random Clifford circuit. This is because the probability that a random Pauli

is in a given state’s stabilizer group is 2n

4n
so we will almost always see the label 1

2
regardless

of the hypothesis circuit we choose.

10.6.3 CNOT Circuits with the Uniform Distribution over {I, Z}⊗n

Recall from Proposition 2.33, the only parts of the full encoding of a Clifford circuit

that matter for a CNOT circuit are Θ and q (see Eq. (2.1) for a definition of these). We

note that if we have enough independent samples that[
Θ
qT

]
is confined to a O(log n) dimensional affine subspace then we can simply iterate through all

possible Θ and Q combinations to find one with a non-singular Θ in poly(n) time.

LetM ′ be the true value of Θ. and letM ̸=M ′ be another arbitrary matrix. Likewise

let x′ be the true value of qT and x some arbitrary vector. When we draw a sample, we will

see both (|v⟩⟨v| , I⊗n+Zw
2

) where v, w ∈ Fn2 are selected uniformly at random. The pair M

and x will give the same label as the true label if and only if(
vT (M +M ′) + xT + (x′)T

)
w = 0 mod 2.

Because w is uniform random, as long as vT (M +M ′) + xT + (x′)T is not the zero vector

over F2 then this will only be 0 at most half the time. If at least one of M ̸=M ′ or x ̸= x′ is

true, then (M +M ′)Tv = x+ x′ will only be true with probability at most 1
2
as well. So the

probability that any arbitrary M and x have different labels is at least 1
4
when they differ

from the true values M ′ and x′. Thus with O(n) expected samples we will have constrained(
vT (M +M ′) + xT + (x′)T

)
w = 0 mod 2.
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to be an affine subapce of O(log n). This means we can bruteforce search to find a full rank

Θ and corresponding qj values that is consistent with all samples. From there we again apply

both Proposition 2.29 and Theorem 9.5 to generalize with zero training error as long as the

number of samples is also at least the parameter m from the theorem statement.

10.6.4 Clifford Circuits for a Distribution with Support over a Single State

In the converse of an earlier situation, let us try to learn Clifford circuits with regard

to a distribution D such that there exists some stabilizer state σ with P(ρ,E)∼D[ρ = σ] = 1.

This situation effectively reduces to that of [Roc18]. If we run that algorithm we will find a

state σ′ that is consistent with all of the labels. Let {gi} be the generators of σ and {g′i} the

generators of σ′. If we let CgiC
† = g′i we define the first part of a Clifford circuit that maps σ

to σ′ as desired. We can then run the algorithm from [VDB21] to fill in the remainder of the

Clifford circuit. Appealing to both Proposition 2.29 and Theorem 9.5 once again completes

the proof.

10.7 Discussion and Open Problems

In this work, we prove a negative result in proper learning of one of the best candidates

for efficient PAC learning of quantum circuits. However, it should be noted that in many cases

there exist improper learners even in the case where proper learning is NP-hard, such as 2-

clause CNF, 3-DNF, and intersection of half spaces[Blu15, BR92, Hag20]. This immediately

leaves the problem of whether or not an improper learner exists for Clifford circuits. One way

of showing hardness would be to leverage cryptographic hardness such as in [Kha93, AGS21].

Another approach would be to assume the hardness of random k-DNF, such as the work of

Daniely [DSS16]. For upper bounds, the work of Caro and Datta [CD20] can also be used

to get agnostic generalization results, providing a possible pathway to answering research

questions in that direction.
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Another thing worth considering is that the hardness results only apply for small

errors (roughly 1/poly(n)). And while this is sufficient to give complexity-theoretic hardness

for the kinds of PAC learners (i.e., strong proper learners) originally introduced by Valiant

[Val84], it would be nice to get hardness results for larger errors as in the work by Guruswami

and Raghavendra [GR09]. This work involved using PCP/hardness-of-approximation ideas

to show that even constant training error was NP-hard.

We also note that a single output bit of a CNOT circuit is simply an XOR, which is

easy to learn efficiently if there is no noise. However, because we are dealing with reversible

computation each output bit has to be a linearly independent XOR such that each input

bit is recoverable. Finding a CNOT circuit that matches a single XOR function f can be

done by sampling expected O(n) random XOR until we get n linearly independent XOR

with one of them being f (see Section 10.6.1). Thus, the entire difficulty of proper learning

CNOT circuits is this linear independence of the output bits. As such, even though AC0 ⊆

TC0 ⊆ NC1 ⊆ L ⊆ ⊕L with the lower classes having improper hardness results based on

cryptographic hardness [Kha93], one cannot directly give an improper learning result for

CNOT circuits despite the fact that simulating CNOT circuits is complete for ⊕L [AG04].

As noted previously, our PAC learning framework is slightly different from that of

[CD20], in that we use Pauli matrices, rather than rank 1 projectors as measurements. To

the author’s knowledge, there exists no proof showing that one framework is necessarily

harder than the other. The author also do not see an obvious way of proving an analogous

hardness theorem in the specific framework of [CD20] for Clifford or CNOT circuits.

Finally, with everything from the input states to the circuits involved being classical,

it is entirely possible to prove the technical results about CNOT circuits only talking about

bit strings and parity functions. Namely, one can replace the entire problem with samples

of the form (x, s, sTCx) where (x, s) ∼ D are in Fn2 respectively and C is a CNOT circuit.

Since the stabilizer group of a computational basis state always lies in {±1} × {I, Z}⊗n, we
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can uniquely define it by the subgroup that has positive phase. This is equivalent to the

orthogonal complement of x, which is the subspace Mx = {x ∈ Fn2 : w · x = 0}. From there,

a sample of the form (x, s, 0) simply says that Cx ∈Ms, and one can get an analogous proof

by copying the lemmas and theorems in Sections 10.3 and 10.5. However, this proof isn’t

anymore intuitive than the one given using stabilizer groups, and in fact is probably less

intuitive to the average reader due to the lack of established formalism from stabilizers and

paulis. It would be interesting if a more intuitive purely classical proof could be made to

show hardness of learning CNOT circuits under this model.
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Chapter 11

On the Hardness of PAC-learning Stabilizer States

with Noise

This chapter is based on [GL22], which was joint work with Aravind Gollakota. Some

of the preliminary results were moved to Chapters 2 and 9.

11.1 Introduction

While stabilizer states can be PAC learned (see Section 9.3), a major question left

open by [Roc18] is: are stabilizer states also efficiently learnable in noisy settings? Motivated

by this question, we introduce to the quantum setting a well-known tool for noise-resilient

classical PAC learning, the statistical query (SQ) model, and define the problem of SQ-

learning quantum states. In this model, rather than receiving labeled measurement-outcome

examples of the form (E,Tr[Eρ]), the learner is only allowed to make statistical queries to an

oracle, and otherwise its goal remains the same. A statistical query is described by a function

φ : E × {−1, 1} → [−1, 1] and a tolerance τ > 0, and the oracle responds to the query with

E[φ(E, Y )]± τ , where the expectation is taken over the random draw of E ∼ D and Y , the

random outcome of measuring ρ using E. One can think of this as modeling an experimental

setup that is unable to report individual measurement outcomes, but is nevertheless able to

estimate expectation values to any desired accuracy. Importantly, an algorithm that is able

to work in this restricted setting automatically gains tolerance to several kinds of noise.

The SQ model was originally introduced by Kearns [Kea98] in the setting of Boolean

function classes, and has since grown into a highly influential model (see [Fel16, Rey20] for
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surveys). The model is known to have the following properties:

• It is a natural restriction of the PAC model that nevertheless captures most known

PAC algorithms for a wide range of common classes [HS07, Rey20].

• SQ algorithms are naturally resistant to mild forms of noise in the labels, such as

“classification noise”, where the label for each training example is flipped with some

constant probability [Kea98].

• It is the most realistic learning model for which strong, unconditional lower bounds

are known for many basic classes. Indeed, there is a considerable literature on this

topic, with lower bounds usually proven using the so-called SQ-dimension and its

generalizations [BFJ+94, Fel12, Rey20].

• SQ algorithms are naturally implementable in a way that satisfies differential privacy

of the training data, and indeed are the main examples of realistic differentially private

learning algorithms [BDMN05, DR14].

Given all of these properties, it is natural to wonder whether the SQ model has

something to bring to quantum learnability, with a particular eye towards noise tolerance.

In this work we show (among other results) that for stabilizer states this approach cannot

work: SQ-learning stabilizer states is exponentially hard, and in general, learning stabilizer

states with noise is as hard as the well-known Learning Parity with Noise (LPN) problem.

Theorem 11.1. Let D denote the uniform distribution on Pauli measurements. Any SQ

algorithm for learning n-qubit stabilizer states under D up to error 2−O(n) (i.e., to significantly

outperform the maximally mixed state) requires 2Ω(n2) queries even when tolerance is 2−O(n2).

Define a parity measurement to be a Pauli measurement of the form Ex = I−Px
2

for

some x ∈ Fn2 , where Px =
∑

y∈Fn2
χx(y) |y⟩⟨y| and χx(y) = (−1)x·y. They are so named since
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for any computational basis state |y⟩⟨y|, Tr[Ex |y⟩⟨y|] = x·y. The following theorems hinge on

the observation (stated as Proposition 11.21) that parities can be very naturally embedded

within the problem of learning stabilizer states under distributions on parity measurements.

Theorem 11.2. Let D′ denote the uniform distribution on parity measurements. Any SQ

algorithm for learning n-qubit stabilizer states under D′ even up to constant error (say 1/3)

requires 2Ω(n) queries even when tolerance is 2−O(n).

Theorem 11.3. Let D′ be as above. Learning n-qubit stabilizer states under D′ with clas-

sification noise at rate η is at least as hard as the classical problem of Learning Parity with

Noise (LPN) at rate η.

(These theorems are formally stated as Corollaries 11.18, 11.22 and 11.23 respec-

tively.)

Our results position the problem of learning stabilizer states as a quantum analogue

of the important classical problem of learning parities.1 In both cases there are simple

“algebraic” learning algorithms for the noiseless setting, and the problem seems to become

intractable with even the simplest kinds of noise. The algorithm of [Roc18] thus joins a

small class of PAC algorithms that do not fall into the SQ model, and hence do not admit

any straightforward algorithms in noisy settings. In our view, this frames learning stabilizer

states with noise as one of the more compelling problems on the frontier of learning quantum

states with noise.

Another interpretation of our results is that they highlight limitations of the PAC

framework of [Aar07]: insofar as this framework reduces the problem of learning quantum

states to an essentially classical problem, it also inherits longstanding problems from classical

learning theory. In particular, Theorem 11.3 arises from a purely classical sub-problem of

stabilizer states and Pauli measurements, much like we see in Chapter 10.

1This recalls the way in which stabilizer codes are a quantum analogue of classical parity check codes.
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We also hope that our introduction of the SQ model to quantum state learning will

be of independent interest and help spur new ideas in this area.

We now detail the rest of our contributions and lay out the organization of this

chapter:

• In Section 11.2, we formally define the problem of SQ-learning quantum states and

extend the notion of the SQ-dimension to this setting, building on recent work that

formally analyzed the SQ-dimension as applicable to the p-concept setting [GGJ+20].

• In Section 11.3, we show that SQ algorithms for learning quantum states are indeed re-

sistant to mild forms of noise, including classical classification noise as well as quantum

channels with bounded noise (such as depolarizing noise).

• In Section 11.4, we give exponential SQ lower bounds on learning stabilizer states.

Under the uniform distribution on Pauli measurements, we show (Corollary 11.18) that

it requires exponentially many queries in order to improve on the maximally mixed

state’s performance. Under a different natural distribution on Pauli measurements,

namely the uniform distribution over parity measurements, we show (Corollaries 11.22,

11.23) that learning stabilizer states with noise is as hard as learning parities with noise.

• In Section 11.5, by way of positive results, we give SQ algorithms for the simple setting

of learning product states. We describe an SQ algorithm for learning product states

under Haar-random single-qubit measurements, and show that it allows one to perform

tomography on the individual qubits.

• In Section 11.6, we relate SQ learning to a form of differential privacy for quantum

state learners. This form of differential privacy has recently been studied by [QAS21].
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11.1.1 Related Work

We emphasize that (just like Chapter 10) we operate in the alternative PAC frame-

work introduced by Aaronson [Aar07] (see Chapter 9) and not the tomographical framework

like in Section 3.4 and Chapter 7. In recent years, this framework has been extended to

the online setting [ACH+19] as well as verified in experimental setups [RAS+19]. To our

knowledge, the only known computationally efficient PAC learners for supervised learning

of a commonly-considered class of states are the algorithm of Rocchetto [Roc18] for learning

stabilizer states, as well as that of Yoganathan [Yog19] for other classes of states whose gener-

ating circuits can be efficiently classically simulated and inverted, including low Schmidt rank

states. While the focus of this chapter is on stabilizer states, we remark that Yoganathan’s

algorithm for low Schmidt rank states also involves solving a system of polynomial equations

in the examples, and hence would also not admit any straightforward SQ implementation.

Cheng et al. [CHY15] frame the problem of PAC-learning unknown quantum measurements

under a distribution of states as a dual problem to PAC-learning an unknown state, and are

able to recover Aaronson’s main sample complexity bound using a classical proof.

Recent work by Arunachalam et al. [QAS21] extends work by Bun et al. [BLM20]

to the quantum setting, and relates differentially private (DP) learning of quantum states

to one-way communication, online learning, and other models. We show in Section 11.6

that our notion of SQ learnability implies their notion of DP learnability, and hence by

their results also implies finite sequential fat-shattering dimension, online learnability, and

“quantum stability.”

We re-emphasize that the problem of PAC-learning quantum states is very different

from the problem of PAC-learning Boolean functions using quantum representations of data,

as considered in a recent active line of work [Ad18, Ad17]. In particular, the model of SQ-

learning that we introduce is unrelated to a recent notion of SQ-learning of Boolean functions

using quantum representations [AGY20]. When one is given quantum samples of Boolean
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or integer-valued functions, there have been important results on learning in the presence

of noise, showing that both Learning Parity with Noise (LPN) [CSS15] and Learning With

Errors (LWE) [GKZ19] are tractable in this setting.

11.2 Preliminaries

Notation and terminology. For ease of notation, we will often refer to the identity on

2n × 2n matrices as simply I rather than I⊗n. It will be clear based on context when this is

happening.

For sake of establishing a nice inner product (much like viewing parities over {±1}

rather than {0, 1}), we will slightly modify our definition of PAC learning quantum states

such that the outcomes are {±1}. Let E denote the space of two-outcome n-qubit measure-

ments E (corresponding to the POVM {E, I −E}), which accept a state ρ with probability

Tr[Eρ]. If we view the measurement outcomes as {−1, 1}-valued, the outcome of measuring

ρ using E is a random variable Y that is 1 with probability Tr[Eρ] and −1 otherwise. Define

fρ : E → [−1, 1] to be the conditional mean function

fρ(E) = E[Y |E] = 1 · Tr[Eρ] + (−1) · (1− Tr[Eρ]) = 2Tr[Eρ]− 1.

We will often identify a state ρ with its behavior with respect to two-outcome measurements,

namely with the function fρ, and use the notation Y ∼ fρ(E) to mean that Y ∈ {−1, 1} is

the random measurement outcome satisfying E[Y |E] = fρ(E). In learning theoretic terms,

this means fρ describes a probabilistic concept, or p-concept, on the space E . A p-concept on

a domain X is a classification rule that assigns random {−1, 1}-valued labels to each point

in X according to a fixed conditional mean function; we always identify the p-concept with

its conditional mean function. Given a set F of quantum states, we use F to also mean the

class of associated p-concepts, with the meaning clear from context.

Given a distribution D over E , we will often regard functions fρ, fσ : E → R as mem-
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bers of the L2 space L2(D, E), with the inner product given by ⟨fρ, fσ⟩D = EE∼D[fρ(E)fσ(E)],

and the norm given by ∥fρ∥D =
√

⟨fρ, fρ⟩D =
√

EE∼D[(fρ(E))2].

11.2.1 Learning Models

Recall the problem of PAC-learning a quantum state from Section 9.2. We will now

modify it to account for probabilistic concepts. The essence of the change is that the labels

are now {±1} and drawn according the probability distribution defined by expectation of

the observable, rather than directly being given the expectation as a value in [−1, 1].

Definition 11.4 (PAC-learnability of quantum states, [Aar07]). Let F be a class of n-qubit

quantum states. Let D be a distribution over E. We say F is PAC-learnable up to squared

loss ε with respect to D if there exists a learner that, given sample access to labeled examples

(E, Y ) for E ∼ D, Y ∼ fρ(E) for an unknown ρ ∈ F , is able to output a state σ satisfying

E
E∼D

[
(fσ(E)− fρ(E))

2
]
≤ ε.

The number of examples used by the learner is called its sample complexity.

Again, one may speak of both computational efficiency (overall running time) and

statistical or information-theoretic efficiency (sample complexity). To reiterate, an efficient

PAC learner is one that is computationally efficient, i.e., runs in polynomial time, and hence

also draws at most polynomially many examples (each draw is considered as taking one unit

of time). In addition to Proposition 9.11, [Aar07] also described a computationally inefficient

algorithm for probabilistic concepts via a generalization theorem.

We now introduce the following natural extension of these definitions to the SQ

setting. In both cases, we operate in the so-called distribution-specific setting, where the

learner is assumed to have knowledge of the distribution D.

Definition 11.5 (SQ-learnability of quantum states). Let F be a class of n-qubit quantum

states. Let D be a distribution over E. An SQ oracle for an unknown state ρ ∈ F is an
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oracle that accepts a query and a tolerance, (φ, τ), where φ : E × {−1, 1} → [−1, 1] and

τ > 0, and responds with y such that∣∣∣y − E
E∼D,Y∼fρ(E)

[φ(E, Y )]
∣∣∣ ≤ τ.

We say F is SQ-learnable up to squared loss ε if there is a learner that, given only queries

to the SQ oracle for an unknown ρ ∈ F , is able to output a state σ satisfying

E
E∼D

[
(fσ(E)− fρ(E))

2
]
≤ ε.

The number of queries used by the learner is called its query complexity.

An SQ learner is considered efficient if it uses polynomially many queries and its

queries all have tolerance τ ≥ 1/poly(n).

11.2.2 SQ Lower Bounds for Probabilistic Concepts

One of the chief features of the classical SQ model is the possibility of proving un-

conditional lower bounds on learning a class C in terms of its so-called statistical dimension.

The quantum setting that we work in, where we identify a state ρ with the p-concept fρ,

becomes a special case of the SQ model for learning p-concepts. Building on recent work

[GGJ+20] that formally proved SQ lower bounds for p-concepts, we extend this framework

to the quantum setting. Let X denote an arbitrary domain (for us, X will be E , while in the

classical setting, X is usually Rn).

Definition 11.6 (Statistical dimension). Let D be a distribution on X , and let C be a

class of functions from X to R. The average (un-normalized) correlation of C is defined

to be ρD(C) = 1
|C|2
∑

c,c′∈C |⟨c, c′⟩D|. The statistical dimension on average at threshold γ,

SDAc alD(C, γ), is the largest d such that for all C ′ ⊆ C with |C ′| ≥ |C|/d, ρD(C ′) ≤ γ.

Theorem 11.7 ([GGJ+20], Cor. 4.6). Let D be a distribution on X , and let C be a p-concept

class on X . Say our queries are of tolerance τ , the final desired squared loss is ε, and that
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the functions in C satisfy ∥c∥D ≥ β for all c ∈ C. For technical reasons, we require τ ≤ ε,

ε2 ≤ β/3. Then learning C up to squared loss ε (we may pick ε as large as
√
β/3) requires

at least SDAD(C, τ 2) queries of tolerance τ .

We remark that the way to interpret such a lower bound is as follows: if the SQ

learner’s queries have tolerance at least τ , then at least SDAD(C, τ 2) queries are required.

That is, one must either use small tolerance or many queries.

The following lemma will be convenient in order to bound the SDA when we have

bounds on pairwise correlations.

Lemma 11.8 ([GGJ+20], Lemma 2.6). Let D be a distribution on X , and let C be a p-

concept class on X such that for all c, c′ ∈ C with c ̸= c′, |⟨c, c′⟩D| ≤ γ, and for all c ∈ C,

∥c∥2D ≤ κ. Then for any γ′ > 0, SDA(C, γ + γ′) ≥ |C| γ′

κ−γ .

11.2.3 The Problem of Learning Parities

One of the most basic problems in classical learning theory is that of learning the

concept class of parity functions. To review [O’D14], let the domain be Fn2 , and for any

subset s ∈ Fn2 , define χs(x) = (−1)x·s to be the parity on s. Since the output is {±1}, we

can recover the traditional form of {0, 1} parity by 1−χs(x)
2

= s · x such that 1 = (−1)0 maps

to 0 and −1 = (−1)1 maps to 1. Let D be any distribution on Fn2 . We say a learner is able to

learn parities under D if given access to labeled examples (x, s · x) where x ∼ D and s ∈ Fn2

is unknown (or, in the SQ setting, given access to the corresponding SQ oracle), and for any

error parameter ε, it is able to output a function h such that Px∼D[h(x) ̸= χs(x)] ≤ ε.

The problem of learning parities displays a striking phase transition in going from the

noiseless to the noisy setting. Given noiseless labeled examples, the problem of recovering the

right parity is simply a question of solving linear equations over F2, and can be done using

Gaussian elimination by a PAC learner using only Θ(n) examples. With just a little noise,
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however, the problem seems to become intractable. Perhaps the simplest noise model one

can consider is the classification noise model, where every example has its label flipped with

some constant probability η (known as the noise rate). Learning parities under classification

noise is the basis of the famous Learning Parity with Noise (LPN) problem. Formally, the

search version of LPN with noise rate η is precisely the problem of learning parities under

the uniform distribution on Fn2 and with classification noise at rate η. Usually one also

has the additional knowledge that the true target χs (the “secret”) is picked uniformly at

random from the set of all parities. This problem is widely conjectured to be hard, including

for quantum algorithms, and is even used as a basis for cryptography (see [Pie12] for a

survey). The best-known algorithms in the PAC setting runs in slightly subexponential time

[BKW03, Lyu05].

Since SQ learners are naturally tolerant of classification noise, one would expect that

there are no SQ learners for parities under the uniform distribution, and indeed, this is one

of the foundational results in the SQ literature.

Theorem 11.9 ([Kea98]). Any SQ learner requires 2Ω(n) queries (even using tolerance

2−O(n)) to learn parities under the uniform distribution on Fn2 even up to constant error

(say 1/3).

Thus we see that simple Gaussian elimination is an example of an efficient PAC

learner that is not SQ. This establishes a characteristic limitation of SQ algorithms: while

they include a wide range of common algorithms, they do not include algorithms that depend

entirely on “algebraic” structure.

It is worth emphasizing that this discussion has considered learning parities with a

classical representation of the data. When given a quantum representation of the data, as

in the quantum “example state” |ψ⟩ = 2−n/2
∑

x∈Fn2
|x, s · x⟩ (taking the distribution over

the domain to be uniform), the task becomes easy even with noise [CSS15]. This is because
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we can now use Hadamard gates to implement a Boolean Fourier transform à la the famous

Bernstein–Vazirani algorithm [BV97].

11.3 Noise-Tolerant SQ Learning

One of the prime features of classical SQ learning is its inherent noise tolerance. From

an intuitive standpoint, certain common stochastic noise models are systematic enough that

their effects in expectation can be predicted in advance, and hence either be corrected for or

bounded. Slightly more precisely, the query expectations of a noisy state are often related in

simple ways to the query expectations on a noiseless state, so that the latter can be recovered

from the former. We mainly consider three such noise models here: (a) classical classification

noise and malicious noise, (b) quantum depolarizing noise, and (c) more general quantum

channels with bounded noise.

11.3.1 Classification and Malicious Noise

Classification noise [AL88] and malicious noise [Val85, KL93] are two classical Boolean

noise models that SQ algorithms are able to handle. In the classification noise model, every

example’s label is flipped with probability η (known as the noise rate). The malicious noise

model is a stronger form of noise where for any given example, with probability 1 − η,

the label is reported correctly, but with probability η both the point and its label may be

arbitrary (and adversarially selected based on the learner’s behavior so far). We note that

these models are well-defined even in the p-concept setting and hence for quantum states,

and simply introduce further randomness into the label. The following results were originally

stated for Boolean functions but readily extend to p-concepts.

Theorem 11.10 ([Kea98]). Let C be a p-concept class learnable under distribution D in the

SQ model up to error ε using q queries of tolerance τ . Then for any constant 0 < η < 1/2,

even with respect to an SQ oracle with classification noise at rate η (i.e., one that computes
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expectations with classification noise), C is learnable up to ε using O(q) queries of tolerance

O(τ(1− 2η)). If the learner is given noisy training examples as opposed to access to a noisy

SQ oracle, then Õ( q
poly(τ(1−2η))

) noisy examples suffice.

Theorem 11.11 ([AD98]). Let C be a p-concept class learnable under distribution D in the

SQ model up to error ε using q queries of tolerance τ . An SQ oracle with malicious noise at

rate η is one that computes query expectations with respect to a distribution (1−η)f(D)+ηQ,

where f(D) denotes the true labeled distribution (x, y) for x ∼ D, y ∼ f(x) (f being the

unknown target p-concept), and Q is an arbitrary and adversarially selected distribution

on X × {−1, 1}. If η = Õ(ε) and η < τ , then even with respect to an SQ oracle with

malicious noise at rate η, C is learnable up to ε using O(q) queries of tolerance τ − η. If

the learner is given noisy training examples as opposed to access to a noisy SQ oracle, then

C is learnable (with constant probability) using Õ( q
poly(τ−η)) noisy examples suffice. (More

efficient implementations are also available in some special cases).

The proofs of both theorems are similar: one first relates the noisy query expectations

to the true expectations, and then argues that when using a suitably small tolerance (or

sufficiently many examples) the effects of the noise can be corrected for (within information

theoretic limits).

11.3.2 Depolarizing Noise

Depolarizing noise acts on quantum states by shifting them closer to the maximally

mixed state. One can consider a setting where it acts on an entire n-qubit state at once,

as well as one where it acts independently on each individual qubit. We will consider the

former.

Definition 11.12 (Depolarizing noise). Let ρ be an arbitrary n-qubit state. Then depo-

larizing noise at rate η (0 < η < 1) acts on this state by transforming it into Λη(ρ) =

(1− η)ρ+ η(I/2n).
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Theorem 11.13. Let 0 < η < 1 be any constant, and let Λη denote the depolarizing channel

at noise rate η. Let C be a class of n-qubit quantum states and D be a distribution on E,

the space of two-outcome measurements on such states. Let L be an SQ learner capable of

learning C under D using q queries of tolerance τ . There there exists a learner L′ such that

for any ρ ∈ C, L′ is capable of learning ρ under D using q queries of tolerance τ(1− η) given

only SQ access to Λη(ρ) as well as sampling access to D.

Proof. For simplicity, we will assume that we know the noise rate η exactly. (So long as we

have an upper bound on η, then by a standard “grid search” argument due to [Kea98], we

can estimate η sufficiently closely simply by trying out many different values. Briefly: if say

we try out η = 0, δ, 2δ, . . . , 1 (1/δ values in all), then one of these will be within δ/2 of the

true η. The algorithm when run with this guess for η will produce a good hypothesis. By

taking δ = O(τ(1 − η)2) and testing all 1/δ hypotheses produced by our guesses for η on a

sufficiently large validation set, we can ensure the best one will perform and generalize well.)

Let ρ ∈ C be the unknown target. Observe that for any E ∈ E , by linearity,

fΛη(ρ)(E) = 2Tr[E · Λη(ρ)]− 1 = (1− η)fρ(E) + ηfI/2n(E).

Let φ : E×{−1, 1} → [−1, 1] be any query made by L. Let φ[ρ] denote the query expectation

of φ under ρ, given by Ex∼D Ey∼fρ(x)[φ(x, y)]. Similarly let the noisy analogue be φ[Λη(ρ)].

Again just by linearity,

φ[Λη(ρ)] = (1− η)φ[ρ] + ηφ[I/2n].

The latter quantity is independent of ρ and can be estimated to arbitrary accuracy by

sampling from D, allowing us to estimate φ[ρ] as φ[Λη(ρ)]−ηφ[I/2n]
1−η . So long as η is bounded

away from 1, we can use a query of tolerance τ(1 − η) to estimate φ[Dη(ρ)] (as well as

1/poly(τ(1−η)) unlabeled examples from D to compute φ[I/2n]), and thereby estimate φ[ρ]

to within τ . Thus we can simulate L even with depolarizing noise.
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It is worth stressing that we are able to handle any constant noise rate η ∈ (0, 1), and

the price we pay is requiring the tolerance to scale as τ(1− η).

11.3.3 Quantum Channels with Bounded Noise

We can also consider more general kinds of quantum channels with bounded noise.

As long as the queries are bounded, small amounts of noise cannot alter query expectations

too much, and so can be “absorbed” into the tolerance. This is similar to classical malicious

noise: since classical malicious noise at rate η only can only change query expectations by η

(recall that the queries are bounded by 1), a noisy query of tolerance τ−η is able to simulate

a noiseless query of tolerance τ . Unlike with depolarizing noise, this means we cannot handle

arbitrary η; this is an artifact of the fact that more general kinds of noise do not permit the

kind of systematic correction we were able to perform for depolarizing noise.

For concreteness here we consider a noisy quantum channel Λ such that ∥Λ−1n∥⋄ ≤ η,

where 1n is the identity map on n-qubit states and the norm is the diamond norm. We do

not define this norm here, but its chief property for our purposes is that for any n-qubit state

ρ and 2-outcome measurement E, |Tr[E(ρ − Λ(ρ))]| ≤ η. Similar theorems can be proven

with respect to other distance measures such as fidelity.

Theorem 11.14. Let Λ be a quantum channel such that ∥Λ− 1n∥⋄ ≤ η, as above. Let C be

a class of n-qubit quantum states learnable under distribution D using q queries of tolerance

τ > 2η. Then C is still learnable under noise Λ (i.e., when our queries are answered not

with respect to ρ but Λ(ρ)) using q noisy queries of tolerance τ − 2η.

Proof. As noted, for any state ρ and measurement E, |Tr[E(ρ − Λ(ρ))]| ≤ η. Consider any

query φ : E × {−1, 1} → [−1, 1]. If φ[ρ] denotes the query expectation on a noiseless state
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and φ[Λ(ρ)] denotes the noisy one, then a straightforward calculation shows that

|φ[ρ]− φ[Λ(ρ)]| =
∣∣∣ E
E∼D

[
(φ(E, 1)− φ(E,−1))Tr[E(ρ− Λ(ρ))]

]∣∣∣
≤ 2 E

E∼D
|Tr[E(ρ− Λ(ρ))]|

≤ 2η.

Thus just by the triangle inequality, if we calculate φ[Λ(ρ)] within tolerance τ − 2η, then we

also get φ[ρ] within τ .

11.3.4 General Noise for Distribution-Free Learning

So far, we’ve only considered distribution-specific learning, where the learner is only

required to succeed with respect to a pre-specified distribution D. In the distribution-free

case, where the learner is required to succeed no matter what Dis, we now give a simple proof

that any SQ algorithm for a concept class can also handle any kind of quantum noise on the

state, as long as the noise is known. This is unsurprising, and at a high level, the approach

simply boils down to off-loading the noise from the state to the measurement. Learning a

noisy set of measurements is thus handled by distribution-free learning algorithm.

Given a quantum operation Λ, its adjoint Λ† is such that ∀ρ,Tr[E·Λ(ρ)] = Tr[Λ†(E)·ρ]

and always exists (see [RLCK19] for details on how to prove this folklore result). Let D be

the distribution we are trying to learn concept class C using statistical queries and let Λ be

the noise applied to the quantum state. We can then define D† to be the distribution Λ†(E)

where E is drawn from D and by definition the traces (and thus the statistical queries) are

the same when applied to ρ and Λ(ρ) respectively. Also by definition, a distribution-free

learner for C would also be able to learn with distribution D†.
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11.4 Lower Bounds on Learning Stabilizer States with Noise

In this section, we focus on the question of: Can stabilizer states be PAC learned

in the presence of noise? We first use the ideas of statistical dimension to show that, in

relevant error regimes, beating the trivial hypothesis (i.e., the maximally mixed state) is

very difficult over the uniform distribution of Pauli measurements. We then look at a more

contrived distribution, and reduce it to the problem of parities. We we know parities to be

impossible to SQ learn efficiently. More generally, we show that the problem of PAC learning

stabilizers states with noise, under this distribution, is equivalent to the problem of LPN.

11.4.1 Difficulty of Beating the Maximally Mixed State on Uniform Pauli Mea-
surements

We will first examine the natural distribution D given by the uniform distribution

over Pauli measurements (Definition 9.12). In doing so, we will show that performing better

than the trivial algorithm of always outputting the maximally mixed state I/2n is difficult.

Recall Fact 9.13. For stabilizer state |ϕ⟩, simple algebraic manipulations tells us that

fρ(E
P ) = Tr[P |ϕ⟩⟨ϕ|] can only take on the values {1, 0,−1} with Tr[P |ϕ⟩⟨ϕ|] being 1 or −1

if and only if P or −P is in the stabilizer group of |ϕ⟩⟨ϕ| respectively.

For compactness of notation, for a quantum state |ψ⟩, let ψ = |ψ⟩⟨ψ|. We now want

to show that for stabilizer states |ϕ⟩ and |φ⟩, the inner product between fϕ and fφ isn’t too

big in absolute value. First, we will need need to show that two different stabilizer states

cannot share more than half of their stabilizers2.

Proposition 11.15. Given two n-qubit stabilizer states |ϕ⟩⟨ϕ| ≠ |φ⟩⟨φ| with stabilizer groups

S = Stab(|ϕ⟩) and S ′ = Stab(|φ⟩) respectively, then |S ∩ S ′| ≤ 2n−1.

2Note the difference from the unsigned stabilizer group. |0n⟩ and |1n⟩ share the same unsigned stabilizer
group, but only half of their phases are aligned the same way.
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Proof. Because |ϕ⟩⟨ϕ| ̸= |φ⟩⟨φ| then S ̸= S ′. We also know that S ∩ S ′ is an abelian group

without −I, so |S∩S ′| < 2n. Since 2n/|S∩S ′| is the dimension of the space stabilized by this

group [Ham89], it must be an integer. Due to the prime factorization of 2n, |S ∩ S ′| = 2m

for some integer 0 ≤ m < n, of which the largest possible m is n− 1.

With this result, we can compute bounds on |⟨fϕ, fφ⟩D| for stabilizer states |ϕ⟩ and

|φ⟩. By the nature of the uniform distribution over finite domains, this reduces to a counting

problem that we solved with Proposition 11.15.

Lemma 11.16. Let C be the concept class of n-qubit stabilizer pure states, and let D denote

the uniform distribution on n-qubit Pauli measurements. Then for any stabilizer states ρ, ρ′

with ρ ̸= ρ′, |⟨fρ, fρ⟩D| = ∥fρ∥2D = 1
2n
, and |⟨fρ, fρ′⟩D| ≤ 1

2n+1 . Furthermore, this inequality

is tight.

Proof. Let |ϕ⟩⟨ϕ| , |φ⟩⟨φ| ∈ C. Let S = Stab(|ψ⟩) and S ′ = Stab(|φ⟩), and also let −S =

{−P : P ∈ S} and −S ′ = {−P : P ∈ S ′}. The correlation of the two p-concepts is:

|⟨fρ, fρ′⟩D| =
1

|Pn|

∣∣∣∣∣∑
P∈Pn

Tr[P |ϕ⟩⟨ϕ|] · Tr[P |φ⟩⟨φ|]

∣∣∣∣∣
=

1

2 · 4n
(|S ∩ S ′|+ |−S ∩ −S ′| − |S ∩ −S ′| − |−S ∩ S ′|)

=
1

4n
(|S ∩ S ′| − |S ∩ (−S ′)|)

If |ϕ⟩⟨ϕ| = |φ⟩⟨φ| then S = S ′ such that |S ∩ S ′| = 2n and |S ∩−S ′| = 0. Thus for all

|ϕ⟩⟨ϕ|

|⟨fϕ, fϕ⟩D| =
2n

4n
=

1

2n

If |ϕ⟩⟨ϕ| ≠ |φ⟩⟨φ| then by Proposition 11.15 |S ∩ S ′| ≤ 2n−1. |S ∩ −S ′| ≥ 0 trivially,

so we get an upper bound of

|⟨fϕ, fφ⟩D| ≤
1

4n
(2n−1) =

1

2n+1
.
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We can show that this inequality is tight because the state |ϕ⟩⟨ϕ| = |0⟩⟨0|⊗n and

|φ⟩⟨φ| = |0⟩⟨0|⊗n−1 ⊗ |+⟩⟨+| saturate this inequality. The generators for the stabilizer group

of |ϕ⟩⟨ϕ| are (omitting tensor products): ZIII · · · I, IZIII · · · I, ... , and IIII · · · IZ. The

generator of |φ⟩⟨φ| are the same, except the last generator is replaced with IIII · · · IX. We

see that |S ∩ S ′| = 2n−1 while |S ∩ −S ′| = 0.

With this result, we can use Lemma 11.8 to compute the SDA and by extension prove

a lower bound on the number of statistical queries needed to learn this concept class under

this distribution.

Theorem 11.17. Let D be the uniform distribution over n-qubit Pauli measurements and

let C be the concept class of all n-qubit stabilizer pure states. Then SDA(C, 1
2n
) = 2Θ(n2).

Proof. By Proposition 2.20, |C| = 2Θ(n2). Using Lemma 11.8 with κ = 1
2n

and γ = 1
2n+1 as

calculated from Lemma 11.16, we find that

SDA(C, γ′ + 1

2n+1
) = SDA(C, γ′ + γ) ≥ |C| γ′

β − γ
= 2Θ(n2)γ′2n+1 = 2Θ(n2)γ′

Setting γ′ = 1
2n+1 gives the result.

Corollary 11.18. Any SQ algorithm needs at least 2Ω(n2) statistical queries of tolerance

τ = 2−O(n) to learn C up to error 2−O(n) over D.

Proof. Simply apply Theorem 11.7, with β = 2−n.

Since the norms of our p-concepts are exponentially small (i.e., 2−n/2), we only get

hardness for error on the order of 2−O(n). But as we now show, the p-concept norm cor-

responds almost exactly to the squared loss achieved by the maximally mixed state. Our

results show that doing significantly better than the maximally mixed state requires 2Ω(n2)

statistical queries even when the tolerance is exponentially small.
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Proposition 11.19. Let D be the uniform distribution over n-qubit Pauli measurements,

EPauli. Let ρ be any state, and let I/2n be the maximally mixed state. Then

∥fρ∥2D = ∥fρ − fI/2n∥2D +
1

4n
.

Proof. In essence, this is simply because the p-concept fI/2n is almost always zero. Specif-

ically, for all E ∈ EPauli \ {0, I}, fI/2n(E) = 2Tr[E/2n] − 1 = 0, since Tr[E] = 2n−1 for all

such E. As for E ∈ {0, I}, we note that fρ(E) = fI/2n(E). Thus

∥fρ∥2D =
1

|EPauli|
∑

E∈EPauli

fρ(E)
2

=
1

|EPauli|

 ∑
E∈EPauli\{0,I}

fρ(E)
2 +

∑
E∈{0,I}

fρ(E)
2


=

1

|EPauli|

 ∑
E∈EPauli\{0,I}

(fρ(E)− fI/2n(E))
2 +

∑
E∈{0,I}

fρ(E)
2


=

1

|EPauli|

 ∑
E∈EPauli

(fρ(E)− fI/2n(E))
2 +

∑
E∈{0,I}

fρ(E)
2


= ∥fρ − fI/2n∥2D +

2

|EPauli|

= ∥fρ − fI/2n∥2D +
1

4n
.

11.4.2 Lower Bounds via a Direct Reduction from Learning Parities

To get around this norm issue, we look at a subset of stabilizer states such that

we can produce p-concepts with norm 1. Recall that the Pauli measurements are the set

of all projectors onto the eigenvalue-1 space of some Pauli matrix P , i.e., {P+I
2

: P ∈

Pn}. We define a subset of the Pauli measurements called the parity measurements, and

show the hardness of SQ-learning stabilizer states under the uniform distribution on such

measurements. This is via a simple equivalence, holding essentially by construction, with the
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problem of learning parities under the uniform distribution. As a further consequence, we

obtain that learning stabilizer states with noise is at least as hard as Learning Parity with

Noise (LPN). This holds for general PAC-learning, even outside the SQ model. We remark

that this hardness result emerges from a purely classical sub-problem of learning stabilizer

states.

Definition 11.20 (Parity measurements). For all x ∈ Fn2 , let Px =
∑

y∈Fn2
χx(y) |y⟩⟨y|.

Since the set of Px is equivalent to {I, Z}⊗n, the corresponding measurement Ex = I−Px
2

is

by definition a Pauli measurement. We will refer to such measurements as parity mea-

surements.

Proposition 11.21. For every distribution D on Fn2 there is a corresponding distribution D′

on parity measurements such that learning computational basis states under D′ is equivalent

to learning parities under D. Furthermore, this equivalence holds even with classification

noise: for any η, learning computational basis states under D′ with noise rate η is equivalent

to learning parities under D with noise rate η.

In particular, learning stabilizer states under D′ is at least as hard as learning parities

under D.

Proof. If the unknown state ρ is a computational basis state |y⟩⟨y|, then the value

Tr[Ex |y⟩⟨y|] =
1− χx(y)

2
= x · y.

In the PAC setting, this would be equivalent to getting the sample (Ex, x · y). Accordingly,

let us define D′ simply as the distribution over Ex for x ∼ D. It is clear that these are

different representations of the same problem, such that a learning algorithm for one implies

a learning algorithm for the other. We note that this relationship holds even in the presence

of classification noise. Finally, note that computational basis states are a subset of the

stabilizer states, so any learner for stabilizer states implies a learner for the computational
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basis states as well. This implies that learning stabilizer states on D′ is at least as hard as

learning parities on D, even in the presence of classification noise.

Corollary 11.22. SQ-learning stabilizer states under the uniform distribution over parity

measurements requires 2Ω(n) queries even with constant error (say 1/3).

Proof. By Proposition 11.21, SQ-learning stabilizer states under the uniform distribution on

Ex parity measurements is at least as hard as learning parities over the uniform distribution.

Applying Theorem 11.9, we get the exponential lower bound.

Corollary 11.23. Learning stabilizer states under the uniform distribution over parity mea-

surements with classification noise rate η is at least as hard as LPN with noise rate η.

Proof. Proposition 11.21 directly implies that learning computational basis states under the

uniform distribution on parity measurements and with classification noise is equivalent to

LPN.

11.5 An SQ Learner for Product States

Turning to positive results, we now give SQ algorithms for some simple concept

classes, namely the computational basis states and, more generally, products of n single-qubit

states. Such states have very well known folklore learning algorithms, since the number of

parameters is merely polynomial in the number of qubits. This demonstrates that there are

indeed learning algorithms for quantum states that can be used in the SQ framework, unlike

stabilizer states. We hope that this helps motivate research into noise-tolerant learning

algorithms, in spite of the lower-bound results given in Section 11.4.

The distribution on measurements that we will consider will correspond to a natural

scheme for these classes: pick a qubit at random and measure it using a Haar-random

unitary. Concretely, let D′ be the distribution of single qubit measurements formed from

191



the projection onto Haar-random single qubit state (i.e., U |0⟩⟨0|U † where U is a Haar

random unitary), and let D be the distribution on n-qubit measurements that corresponds

to picking a qubit at random and measuring it using a measurement drawn from D′. That

is, D = 1
n

∑n
i=1 I

⊗i−1 ⊗D′ ⊗ I⊗n−i. Let C be the concept class of product states ρ = ⊗n
i=1ρi.

Of course, this class includes the computational basis states. The main result of this section

will be a simple O(n)-query SQ algorithm for learning C under the distribution D.

We remark that our algorithm’s guarantee actually trivially extends to learning arbi-

trary (not just product) states under the above distribution D of single-qubit Haar-random

measurements. This is simply because such measurements only ever inspect each qubit in-

dividually, so that a product state ⊗iρi is indistinguishable—under D—from a more general

mixed state ρ whose reduced density matrix on qubit i is ρi for every i.3 Yet since this

distribution on measurements is fundamentally not very interesting for anything other than

product states, we state the results in this section only for product states.

The following technical lemma will be the backbone of our results.

Lemma 11.24. For any single qubit pure state |ψ⟩⟨ψ| = I+P
2

and mixed state ρ:

E
E∼D′

[
sgn

(
Tr [E |ψ⟩⟨ψ|]− 1

2

)(
Tr [Eρ]− 1

2

)]
=

1

4
Tr[Pρ].

Proof. We will decompose ρ = λ |ϕ⟩⟨ϕ|+(1−λ) |ϕ⊥⟩⟨ϕ⊥| such that |ϕ⟩ = cos θ′ |ψ⟩+sin θ′ |ψ⊥⟩

and |ϕ⊥⟩ = eiϕ
′
(sin θ′ |ψ⟩ − cos θ′ |ψ⊥⟩). The following identity will be useful at the end:

3We stress that in the PAC formalism, the goal is not necessarily to learn the exact state, but simply to find
one that behaves similarly under the specified input distribution of measurements. Thus for measurements
of the kind drawn from D, learning the product of reduced density states is sufficient.
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Tr[Pρ] = 2Tr[|ψ⟩⟨ψ| ρ]− 1

= 2
[
λTr[|ψ⟩⟨ψ| |ϕ⟩⟨ϕ|] + (1− λ)Tr[|ψ⟩⟨ψ| |ϕ⊥⟩⟨ϕ⊥|]

]
− 1

= 2 cos2 θ′λ+ 2(1− λ) sin2 θ′ − (sin2 θ′ + cos2 θ′)

= (2λ− 1) cos2 θ′ − (2λ− 1) sin2 θ′

= (2λ− 1) cos 2θ′

Let U be the unitary such that U |0⟩ = |ψ⟩ and U |1⟩ = |ψ⊥⟩. Due to symmetry,

we can parameterize a Haar-random single qubit state using spherical coordinates as E =

1
2
U(I + cosϕ sin θX + sinϕ sin θY + cos θZ)U † for the Pauli matrices X, Y , and Z.

Tr [E |ψ⟩⟨ψ|] = Tr

[
1

2
U(I + cosϕ sin θX + sinϕ sin θY + cos θZ)U † |ψ⟩⟨ψ|

]
= Tr

[
1

2
(I + cosϕ sin θX + sinϕ sin θY + cos θZ) |0⟩⟨0|

]
=

1 + cos θ

2

We can also do the same thing for ρ:

Tr [Eρ]

= λTr[E |ϕ⟩⟨ϕ|] + (1− λ)Tr[E |ϕ⊥⟩⟨ϕ⊥|]

= λ
1 + cos θ cos 2θ′ + cosϕ sin θ sin 2θ′

2
+ (1− λ)

1− cos θ cos 2θ′ − cosϕ sin θ sin 2θ′

2

=
1 + (2λ− 1)(cos θ cos 2θ′ + cosϕ sin θ sin 2θ′)

2

This allows us to perform a spherical integral over θ and ϕ to get the expectation:
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E
E∼D′

[
sgn

(
Tr [E |ψ⟩⟨ψ|]− 1

2

)(
Tr [E |ϕ⟩⟨ϕ|]− 1

2

)]
=

1

4π

∫ 2π

0

dϕ

∫ π

0

dθ sin θsgn (cos θ)

(
(2λ− 1)

cos θ cos 2θ′ + cosϕ sin θ sin 2θ′

2

)
=

2λ− 1

8π

∫ 2π

0

dϕ

[∫ π/2

0

−
∫ π

π/2

]
dθ sin θ (cos θ cos 2θ′ + cosϕ sin θ sin 2θ′)

= (2λ− 1)
π cos 2θ′ + π cos 2θ′

8π

= (2λ− 1)
cos 2θ′

4

=
1

4
Tr[Pρ]

Our algorithm for learning product states will be work by learning each qubit in the

Pauli basis. This gives an estimate of each qubit’s (reduced density matrix) location on

the Bloch sphere. We then relate this location to squared loss. This results in a 3n-query

algorithm, corresponding to the 3n parameters that it takes to define a product state.

We first require a well-known fact about the trace distance (see Definition 2.5 for

a definition) between single qubit states relative to their euclidean distance on the Bloch

sphere.

Proposition 11.25 (folklore). Given two single qubit states ρ and σ, the trace distance

TD(ρ, σ) is half the Euclidean distance between their points on the Bloch sphere.

The following lemma will then be necessary to relate trace distance of the states to

the squared loss in learning under this distribution.

Lemma 11.26. For n-qubit product states ρ =
⊗

i ρi and σ =
⊗

i σi, let fρ(E) = 2Tr[Eρ]−1

and fσ(E) = 2Tr[Eσ]−1. Let D be the distribution over measurements defined earlier. Then

E
E∼D

[(fρ(E)− fσ(E))
2] =

4

3n

n∑
i=1

TD(ρi, σi)
2
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Proof. Let ξ = ρ− σ. Then by linearity

fρ(E)− fσ(E) = 2(Tr[Eρ]− Tr[Eσ]) = 2Tr[Eξ].

We will define ξi = Tri(ξ) = ρi− σi to be the reduced density matrix on the ith qubit

of ξ. Noting that each ξi is traceless, then by diagonalizing we can write ξi = λi |λi⟩⟨λi| −

λi |λ⊥i ⟩⟨λ⊥i | for λi ∈ [0, 1] such that λi = TD(ρi, σi) is the trace distance of the reduced

density matrix.

Like in Lemma 11.24, we can parameterize a single-qubit Haar-random projection as

E = 1
2
U(I+cosϕ sin θX+sinϕ sin θY +cos θZ)U †, where U |0⟩ = U |λi⟩ and U |1⟩ = U |λ⊥i ⟩.

This implies that UξiU
† = λiZ.

Tr[Eξi] = Tr

[
1

2
U
(
I + cosϕ sin θX + sinϕ sin θY + cos θZ

)
U †ρ

]
= Tr

[
1

2

(
I + cosϕ sin θX + sinϕ sin θY + cos θZ

)
· λiZ

]
= λi cos θ

Using this, we now compute the squared-loss as follow.

E
E∼D

[(fρ(E)− fσ(E))
2] =

1

n

n∑
i=1

E
E′∼D′

[(fρi(E
′)− fσi(E

′)2]

=
4

n

n∑
i=1

E
E′∼D′

[
Tr2 [E ′ξi]

]
=

4

n

n∑
i=1

1

2

∫ π

0

sin θ · λ2i cos2 θ

=
4

3n

n∑
i=1

λ2i

=
4

3n

n∑
i=1

TD(ρi, σi)
2
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We now show how to use Lemma 11.24 to learn each qubit of the product state,

allowing us to then apply Lemma 11.26 to get our learning result.

Theorem 11.27. Let D be the distribution on measurements and let C be the concept class

of product states defined earlier. There is an SQ learner that is able to learn C under D up

to squared loss ε using 3n queries of tolerance
√
ε/n.

Proof. Let the unknown ρ ∈ C be given by ρ =
⊗

i ρi. If we define P1 = X, P2 = Y , and

P3 = Z, then our queries will be

φi,j(E, Y ) = sgn

(
1

2n−1
Tr

[
E ·
(
I⊗i−1 ⊗ I + Pj

2
⊗ I⊗n−i

)]
− 1

2

)
· Y

The query φi,j will correspond to taking the projection of the ith qubit along the Pauli Pj,

as we now show:

E
E∼D,Y∼fρ(E)

[φi,j(E, Y )] = E
E∼D

[
φi,j(E, 1)Tr [Eρ] + φi,j(E,−1)

(
1− Tr [Eρ]

)]
= E

E∼D

[
φi,j(E, 1)

(
2Tr [Eρ]− 1

)]
=

1

n
E

E′∼D′

[
sgn

(
Tr [E ′ |0⟩⟨0|]− 1

2

)(
2Tr [E ′ρi]− 1

)]
=

1

2n
Tr[Pjρi].

Here the third equality exploits the definition of D as 1
n

∑n
i=1 I

⊗i−1 ⊗ D′ ⊗ I⊗n−i (only the

ith term yields a nonzero expectation), and the fourth equality is Lemma 11.24.

Any specific qubit ρi can be written in Bloch sphere coordinates as I+xiX+yiY+ziZ
2

.

We can estimate xi =
1
2
Tr[P1ρi] up to error

√
ε using a single query of tolerance

√
ε/n. The

same holds true for yi and zi. If we use this to construct our estimate

ρ̂i =
I + x̂iX + ŷiY + ẑiZ

2

then by Proposition 11.25 we get

TD(ρi, ρ̂i)
2 =

1

4

[
(xi − x̂i)

2 + (yi − ŷi)
2 + (zi − ẑi)

2
]
≤ 3ε/4.
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Finally, using Lemma 11.26:

E
E∼D

[(fρ(E)− fσ(E))
2] ≤ 4

3n

n∑
i=1

3ε/4 = ε.

We note that if the estimated point is outside of the Bloch sphere, we can simply

normalize the point to the surface of the Bloch sphere and this will never increase the error.

To quickly sketch the proof of this, take the plane formed by the center of the sphere, the

estimated point p̂ that is outside of the sphere, and the real point p which is both within the

Bloch sphere and within a sphere ε radius located at p̂. The normalized point p̂′ is always

located on the line from the p̂ to the origin, and one can make a separating plane that bisects

the line segment between p̂ and p̂′ that denotes whether one is closer to p̂ or p̂′. Since the

Bloch sphere will always be on the side closer to p̂′ and the real point p is in the Bloch

sphere, p will always be closer to p̂′ than p̂.

We can simplify this algorithm if we know in advance that ρ is a computational basis

state. In that case, we know that each qubit ρi is either (I + Z)/2 or (I − Z)/2, and so

we only need to make n queries φi,3, one for each i. Moreover, we only need to identify

the coordinate zi to within an accuracy of 1 in order to distinguish the zi = 1 and zi = −1

cases, so that our tolerance need only scale as O(1/n) in order to learn ρ perfectly (i.e., with

ε = 0).

11.6 Connections to Differential Privacy

A PAC learning algorithm L can be viewed as a randomized algorithm that takes as

input a training dataset (i.e., a set of labeled examples (x, y) sampled from a distribution)

and outputs a hypothesis that with high probability has low error over the distribution. That

is, if S is a training dataset, then L(S) describes a probability distribution over hypotheses

(where the randomness arises from the internal randomness of the learner). Intuitively,
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differential privacy requires L to satisfy a kind of stability: on any two inputs S and S ′ that

are close, the distributions L(S) and L(S ′) must be close as well.

Definition 11.28 (Differential privacy, [DR14]). Call two datasets S = {(xi, yi)}mi=1 and

S ′ = {(x′i, y′i)}mi=1 neighbors if they only differ in one entry. A learner L (understood in the

sense just discussed) is said to be α-differentially private (or α-DP for short) if for any S

and S ′ that are neighbors, the distributions L(S) and L(S ′) are close in the sense that for

any hypothesis h, P[L(S) = h] ≤ eα P[L(S ′) = h].

A well-known property of SQ algorithms is that they can readily be made differentially

private [BDMN05, DR14]. Since differential privacy is a notion that is well-defined only in

the PAC setting where the input is a set of training examples (as opposed to access to an

SQ oracle), such a statement is necessarily of the form “any SQ learner yields a PAC learner

that satisfies differential privacy.”

Theorem 11.29 (see e.g., [Bal15]). Let C be a concept class learnable up to error ε by an SQ

learner L using q queries of tolerance τ . Then it is also learnable up to error ε in the PAC

setting by an α-DP learner L′ with sample complexity Õ( q
ατ

+ q
τ2
) (with constant probability).

The proof is standard and proceeds by simulating each of L’s queries using empirical

estimates over a sample of size roughly 1/τ 2 and then using the Laplace mechanism to add

some further noise.

One can extend this notion to the quantum setting. One natural and direct way

of doing so is simply by replacing the classical dataset of labeled pairs (xi, yi) by one of

measurement-outcome pairs (Ei, Yi); the rest remains exactly analogous. Theorem 11.29

then carries over verbatim to our notion of quantum SQ learnability. This form of quantum

differential privacy was recently studied by Arunachalam et al. [QAS21], who were able to

relate it to online learning, one-way communication complexity, and shadow tomography of
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quantum states, extending ideas of [BLM20]. Since our notion of quantum SQ learnability

implies quantum DP learnability, it also fits into their framework. In particular, by the chain

of implications established in that work, efficient quantum SQ learnability of a class of states

implies DP PAC learnability, which implies finite sequential fat-shattering (sfat) dimension,

which in turn implies online learnability, gentle shadow tomography, and “quantum stabil-

ity.” In fact, in the classical setting, some of the main examples of realistic DP learners are

SQ (even though technically the inclusion is known to be strict) [BDMN05, KLN+11], and

one might expect the same to hold in the quantum setting as well.

We remark that a somewhat different kind of quantum differential privacy, where

privacy is with respect to copies of the unknown state, may also be defined as follows.

View a quantum state learner L as an algorithm that takes in multiple copies ρ⊗m of some

unknown state ρ, is allowed to sample and perform random measurements from a distribution

D, and outputs another state σ that is required to be close to ρ with respect to D with high

probability. If the random measurements are viewed as the internal randomness of the

learner, then this is similar to the view we took of a classical learner earlier. We can now

define a notion of differential privacy for quantum state learners by requiring that L(ρ⊗m)

and L(ρ⊗m−1 ⊗ ρ′) (where ρ ̸= ρ′, so that ρ⊗m and ρ⊗m−1 ⊗ ρ′ are neighbors) are α-close

as distributions over states (in the natural way). This can also be seen as a stylized kind

of tolerance to noise or corruptions. The following analogue of Theorem 11.29 can then

be proven using almost exactly the same proof; essentially, we are only replacing classical

examples with copies of quantum states.

Theorem 11.30. Let C be a class of quantum states learnable up to error ε by an SQ learner

L using q queries of tolerance τ . Then it is also learnable up to error ε in the PAC setting

by an α-DP learner L′ (in the specific sense just described) with copy complexity Õ( q
ατ

+ q
τ2
)

(with constant probability).
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Note that these notions are different from those of [AR19], which defined differential

privacy for quantum measurements. Here two n-qubit states are considered neighbors if

it is possible to reach one from the other by a quantum operation (sometimes called a

superoperator) on a single qubit. In particular, two product states ρ = ⊗iρi and σ = ⊗iσi

are neighbors if ρi = σi for all i but one.

Definition 11.31 (Quantum differential privacy for measurements, [AR19]). A measure-

ment M is said to be α-DP if for any n-qubit neighbor states ρ, σ, and any outcome y,

P[M(ρ) = y] ≤ eα P[M(σ) = y].

The authors show that this definition can be related to the notion of a “gentle quan-

tum measurement,” and this connection can be carefully exploited to perform shadow to-

mography [Aar19]. However, this kind of quantum DP is not applicable in a natural way to

a PAC or SQ learner, since such a learner is an algorithm rather than just a single measure-

ment.

11.7 Discussion and Open Problems

Statistical vs. query complexity. Conceptually, the contrast between our SQ model

and the original PAC model of [Aar07] is interesting. Apart from the definition of an elegant

model, Aaronson’s main insight was to characterize learnability in a purely statistical sense,

showing bounds on sample complexity via an analysis of the so-called fat-shattering dimen-

sion of quantum states. In learning theoretic terms, this took advantage of a separation of

concerns that the PAC model encourages: (a) empirical performance, i.e., a learner achiev-

ing low error with respect to the training data, and (b) generalization, i.e., this performance

actually generalizing to the true distribution. The SQ model, however, does not naturally

accommodate such a separation. SQ algorithms are instead primarily characterized by the

number of queries required; generalization is “in-built.” The closest analogue to a notion of
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sample complexity is the role played by the tolerance, and the closest thing to studying gen-

eralization on its own might have been to show a phase transition in what different regimes

of the tolerance are able to accomplish. The formal statements of our SQ lower bounds do

have such a flavor: “either use small tolerance or many queries.”

Suitable classes and distributions for PAC-learning. It is notable that the algorithms

of [Roc18] for learning stabilizer states and [Yog19] for low Schmidt rank states are essentially

the only known positive results in the framework of [Aar07]. Both these algorithms are

“algebraic” and involve solving a system of polynomial equations, something that SQ cannot

handle. A longstanding question in this area is: what other interesting classes can be learned,

and under what distributions on measurements? And can they also be learned in the SQ

setting?

A major issue in picking suitable distributions on measurements is that under many

natural distributions, the maximally mixed state actually performs quite well, so that the

problem of learning becomes essentially superfluous. Even in this work, we obtained lower

bounds for learning stabilizer states under the uniform distribution on Pauli measurements

only for learning up to exponentially small squared loss. This was because the norms of

the p-concepts are themselves exponentially small, or in other words the maximally mixed

state already achieves exponentially small loss. We were able to get around this and obtain

a Ω(2n) lower bound via a direct reduction from learning parities (by considering parity

measurements). Can we do better than just 2n? Is there a ω(2n)-sized (e.g., 4n or 2n
2
) subset

of stabilizer states such that there exists a distribution over Pauli measurements inducing

norms that are only polynomially small yet have an exponentially small average correlation?

That is, is there a ω(2n)-sized set of stabilizer states and accompanying distribution over

Pauli measurements such that the maximally mixed state does not do well?
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Other forms of noise. Can we extend the noise tolerance of SQ algorithms to more forms

of noise, or improve the parameters of the noise tolerated? One such interesting form of noise

would be depolarizing noise that acts on individual qubits (as opposed to acting directly on

the whole state).

Probabilistic Concepts for Stabilizer States in the PAC framework In this work,

we assumed both probabilistic concepts as well as access to statistical queries only. We note

that despite the decision to use the more difficult probabilistic concepts, Proposition 11.21

also gives hardness even in the case where exact measurement values are given. Likewise,

the PAC learning algorithm in [Roc18] requires exact trace values, rather than probabilistic

concepts. That leads to perhaps the most important open question of: can stabilizer states

be PAC learned (even without noise) in the probabilistic concept model?

Noise-tolerant learning beyond SQ. The best-known PAC algorithms for learning par-

ities with noise are due to [BKW03] and [Lyu05] and runs in slightly subexponential time.

Interestingly, this means it beats the exponential SQ lower bound and is hence essentially the

only known example of a noise-tolerant PAC algorithm that is not SQ (although it cannot

handle noise arbitrarily close to the information-theoretic limit). Can we similarly hope for

a noise-tolerant but non-SQ learner for stabilizer states that runs in subexponential time?

Flat distributions and unitary designs [HCP22] defined a so-called locally flat dis-

tribution, which is any distribution that is invariant under the single-qubit Clifford gates.

The high level idea is that due to the fact that the Clifford unitaries form a unitary 3-design

[Web16]. Thus the expectation of a locally flat distribution and the distribution over product

states where each qubit is Haar random are the same for the purposes of their algorithm.

Can a similar thing be done with the algorithm in Section 11.5, where rather than measure
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a uniformly drawn qubit with a Haar random state, the qubit is measured using a locally

flat distribution?
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Appendix A

Sample Efficient PAC Learning of General Quantum

Circuits

This chapter is based on the appendix of [Lia23]. We generalize the main results of

[CD20], which is itself analogous to [GJ95], to allow for projective measurements beyond rank

1, such as in the settings used in Chapter 10. While this was not necessary for any results,

we hope to give this proof as a reference in a way that is also more black-box accessible for

future work.

A.1 Quantum Circuits as Polynomials

The end goal will be to show that the outputs of our concept class can be described as

a set of polynomials with bounded degree. Combined with an upper bound on the number

of polynomials in that set, we can later arrive at an upper bound on the pseudo-dimension,

which itself is an upper-bound on fat-shattering dimension.

We now show a more terse version of Lemma 3 from [CD20].

Lemma A.1. Consider a quantum circuit C with a fixed circuit structure (i.e., the location of

the 2-qudit gate are in fixed positions, though the gates themselves can be arbitrary) comprised

of at most Γ 2-qudit gates. Such circuit can be described using variables c1, c2, · · · , ck ∈ R

such that k = 2γd4. Then for every pair of quantum states |ψ⟩ and |ϕ⟩ there exists a

polynomial p(|ψ⟩,|ϕ⟩)(c1, c2, · · · , ck) = Tr
[
C |ψ⟩⟨ψ|C† |ϕ⟩⟨ϕ|

]
with degree at most 2Γ.

Proof. Every 2-qudit gate U can be näıvely expressed as the d4 complex values that make

up the d2 × d2 unitary. By splitting up the complex values into a real and imaginary part,
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we get 2d4 real values to describe each 2-qudit gate. If |ψ⟩ =
∑

s∈{0,1}n αs |s⟩ then applying

a 2-qudit unitary to |ψ⟩ leaves us with the amplitudes of this new state being a polynomial

of degree 1 in terms of the entries of U . Note that the αi, along with the circuit structure,

are what determine the coefficients of this polynomial. By applying all γ 2-qudit gates that

comprise C, the amplitudes of C |ψ⟩ can be described as a polynomial of degree Γ in 2γd4

variables. Finally, since we can write |ϕ⟩ =
∑

s∈{0,1}n βs |s⟩, then the inner product ⟨ϕ|C|ψ⟩

is some weighted linear combination of the amplitudes of C |ψ⟩, which is a again polynomial

with degree at most Γ. To get

Tr
[
C |ψ⟩⟨ψ|C† |ϕ⟩⟨ϕ|

]
= |⟨ϕ|C|ψ⟩|2

we note that the degree at most doubles when we multiply a polynomial by itself. This

leaves us with p(|ψ⟩,|ϕ⟩)(c1, c2, · · · , ck) as polynomial of degree at most 2Γ and m = 2γd4.

Corollary A.2. Consider a quantum circuit C with a fixed circuit structure (i.e., the lo-

cation of the 2-qudit gate are in fixed positions, though the gates themselves can be arbi-

trary) comprised of at most γ 2-qudit gates. Such circuit can be described using variables

c1, c2, · · · , ck ∈ R such that k = 2γd4. Then for every pair of quantum state |ψ⟩ and projector

Π there exists a polynomial p(|ψ⟩,Π)(c1, c2, · · · , ck) := Tr
[
C |ψ⟩⟨ψ|C†Π

]
with degree at most

2γ.

Proof. We note that Π =
∑

i |ϕi⟩⟨ϕi|. By linearity of the trace

p(|ψ⟩,Π)(c1, c2, · · · , ck) = Tr
[
C |ψ⟩⟨ψ|C†Π

]
= Tr

[
C |ψ⟩⟨ψ|C†

∑
i

|ϕi⟩⟨ϕi|

]
=
∑
i

Tr
[
C |ψ⟩⟨ψ|C† |ϕi⟩⟨ϕi|

]
=
∑
i

p(|ψ⟩,|ϕi⟩)(c1, c2, · · · , ckm).
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By Lemma A.1, this is the sum of real polynomials in 2Γd4 variables with degree at most

2γ. Since the sum does not increase the degree, we are done.

Since we fixed the circuit structure, we will want to know how many circuit structures

there are, because this directly bounds the number of polynomials we need to consider. The

following result was the main ingredient in the proof of Lemma 2 from [CD20].

Lemma A.3 ([CD20] Lemma 2). There are at most γ!δγ−δ

(γ−δ)! (n!)
δ ways to structure 2-qudit

circuits with size γ and depth δ.

A.2 Pseudo-Dimension of Concept Classes Described via Polyno-
mials

The following is a generalization of [GJ95], which used the degree of polynomials to

bound the pseudo-dimension of concept classes that could be defined using polynomials in

the parameter space of the concepts.

Definition A.4. The pseudo-dimension of a concept class C is the limit of the fat-shattering

dimension parameter η as η goes to zero. Formally, the pseudo-dimension is limη→0+ fatC(η).

Because fat-shattering dimension increases as η decreases, fat-shattering dimension

is always upper-bounded by the pseudo-dimension for all values of η > 0.

Definition A.5. Let {p1, p2, · · · , pm} ⊆ Rk → R be a set of m polynomials on k variables.

For η > 0, the η-sign assignment of {p1, p2, · · · , pm} on the input (x1, x2, · · · , xk) ∈ Rk is

the vector b ∈ {−1, 0, 1}m such that

bi =


1 pi(x1, x2, · · · , xk) ≥ η

−1 pi(x1, x2, · · · , xk) ≤ −η
0 otherwise

.

Lemma A.6 ([GJ95] Corollary 2.1). Let {p1, p2, · · · , pm} ⊆ Rk → R be a set of real polyno-

mials in k variables with m ≥ k, each of degree at most d ≥ 1. Then the number of unique
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η-sign assignments that {p1, p2, · · · , pm} can create over all inputs in Rk is at most
(
8edm
k

)k
in the limit as η → 0+.

Lemma A.6 is a stronger notion than pseudo-dimension, since it upper bounds the

number of sign assignments over arbitrarily large sets of inputs. Since pseudo-dimension

requires that C can achieve all (i.e., an exponential number of) sign assignments on some

large set of samples, we can show that the pseudo-dimension cannot be too large. We

formalize that notion here. Note that the polynomials in question in the following proof are

over the parameters of the concept class, not the inputs. The intuition is that if the output

of the concept is some bounded-degree polynomial in the parameter space, there cannot be

too many sign assignments.

Theorem A.7 (Generalization of [GJ95] Theorem 2.2). Let C ⊆ Ω → [0, 1] be a concept class

such that every element of C can be described via k different real variables c1, c2, · · · ck ∈ R,

as well as an index l ∈ [s] for s ≥ 0. Furthermore, for every fc1,c2,···ck,l ∈ C and x ∈ Ω, let

fc1,c2,···ck,l(x) = px,l(c1, c2, · · · ck) where px,l is one of s polynomials each with degree at most

d for d ≥ 1. Then the pseudo-dimension of C is at most 2k log2(8eds).

Proof. Let (x1, y1), (x2, y2), · · · , (xm, ym) ⊆ R be the largest set of points pseudo-shattered

by C. If ms < k, then there is no issue because the largest shattered set is smaller than k,

which is smaller than 2k log2(8eds). Now assume thatms ≥ k. By Definition A.4, there must

exist some points y1, y2, · · · , ym ∈ R and some (potentially arbitrarily small) value η > 0

such that for all bi ∈ {±1}m, there is a fc1,c2,···ck ∈ C with bi ·(fc1,c2,···ck(xi)− yi) ≥ η. Because

fc1,c2,···ck,l(xi) = pxi,l(c1, c2, · · · ck), we can define the new set of polynomials p′i,l = pxi,l − yi.

This means that
⋃
i,l{p′i,l} is a set of ms polynomials that must be able to create at all

2m different sign assignments that define b. However, we know from Lemma A.6 that the

number of different sign assignments is at most
(
8edms
k

)k
as long as ms ≥ k, which we have
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assumed to be true. Therefore, 2m ≤
(
8edms
k

)k
. Taking the logarithm of both sides,

m ≤ k log2

(
8edms

k

)
= k log2(8eds) + k log2

m

k
.

We divide the situation into two cases based on which of these two logarithms is bigger:

8eds ≥ m
k

and 8eds < m
k
. The first case is easy to analyze, since if 8eds ≥ m

k
, then we

directly get m ≤ 2k log2(8eds) via substitution on the right-hand side. The other case leads

to m < 2k log2
m
k
, also via substitution on the right-hand side. Solving this with the Lambert

W -function tells us that if k > 0 then m < ke−W−1(− ln 2
2 ) = 4k. Because d ≥ 1 and s ≥ 1

then log2(8eds) ≥ log2(4e) > 2, so m < 4k < 2k log2(8eds) for this other case as well.

A.3 Pseudo-dimension for Quantum Circuits

Proposition A.8 (Stirling’s approximation).

ln(n!) = n lnn− n+O(lnn) = O(n lnn)

Theorem A.9 (Generalization of [CD20] Theorem 3). The pseudo-dimension of quantum

circuits on n qudits comprised of at most γ 2-qudit gates with depth δ is upper bounded by

O(d4δγ2 log γ).

Proof. We want to apply Theorem A.7 to the concept class of quantum circuits. We know

from Corollary A.2 that for fixed circuit structure with γ gates and depth δ that it can be

described as a polynomial with degree at most 2γ in the 2γd4 real variables that describe

the entries of the circuit. Furthermore, Lemma A.3 tells us that there is at most γδγ−δ

(γ−δ)!(n!)
δ

different circuit structures. We then apply Theorem A.7 with k = 2γd4, d = 2γ and s =

γ!δγ−δ

(γ−δ)! (n!)
δ. As a result we get that the pseudo-dimension is at most

2k log2(8eds) = 4γd4 log2

(
8e(2γ)

γ!δγ−δ

(γ − δ)!
(n!)δ

)
(A.1)
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We will now focus on giving an upper bound for the logarithmic term by showing

that

log2

(
8e(2γ)

γ!δγ−δ

(γ − δ)!
(n!)δ

)
= O(δγ log γ).

Splitting up the logarithm into sums and applying Stirling’s approximation to each factorial,

we arrive at

log2

(
8e(2γ)

γ!δγ−δ

(γ − δ)!
(n!)δ

)
= 4 + log2 e+ log2 γ + (γ − δ) log2 γ

+O(γ ln γ) + δ ·O(n lnn) +O((δ − γ) ln(γ − δ)

= O(γ log γ + δn log n+ δ log γ)

Due to the definition of circuit structure, we know that δ ≤ γ. WLOG, we can also

assume that every qubit has been acted upon by at least one gate (even if it’s just the identity

gate) such that n ≤ γ. Together, we arrive that the logarithmic term is at most O(δγ log γ).

Since we have achieved our goal of upper-bounding the logarithmic term, Eq. (A.1)

shows that the pseudo-dimension is at most O(d4δγ2 log γ).

We now state the generalization of the main result in [CD20] to projective measure-

ments of arbitrary rank.

Corollary A.10 (Generalization of [CD20] Corollary 3). Let X be the set of quantum states

on n qudits, and let Y be the set of all projectors on n qudits. Let U∗ be a quantum circuit

of 2-qudit quantum gates with size Γ and depth ∆. Let D be a probability distribution on

X × Y unknown to the learner. Let

S =
{((

x(i), y(i)
)
,Tr
[
y(i)U∗x

(i)U †
∗
])}m

i=1

be corresponding training data where each
(
x(i), y(i)

)
is drawn i.i.d according to D. Let

δ, ε, α, β ∈ (0, 1) where β > α. Then, training data of size

m = O

(
1

ε

(
∆d4Γ2 log∆ log2

(
∆d4Γ2 log(Γ)

(β − α)ε

)
+ log

1

δ

))
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suffice to guarantee that, with probability ≥ 1− δ with regard to choice of the training data,

any quantum circuit U of size Γ and depth ∆ that satisfies

∣∣Tr[y(i)U∗x
(i)U †

∗
]
− Tr

[
y(i)Ux(i)U †]∣∣ ≤ α ∀1 ≤ i ≤ m

also satisfies

E
(x,y)∼D

[(
Tr
[
y(i)U∗x

(i)U †
∗
]
− Tr

[
y(i)Ux(i)U †])2] ≤ (1− ε)β2 + ε

Proof. We combine Theorem A.9 with Theorem 9.5, along with the fact that for all η > 0

the η-fat-shattering dimension is upper-bounded by pseudo-dimension.

As shown by Theorem 4 of [CD20], a similar thing can be done with n-qudit quan-

tum processes by simply changing the d4 to d8 in Lemma A.1 and Corollary A.2. This is

because a quantum process is still a linear operation, but contains d8 many entries now in

parameter space. This propagates to Theorem A.9 and Corollary A.10 by again replacing

every appearance of d4 with d8.
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